
1

FORTRAN

and the

ART

of

Windows

Programming

Eddie Bromhead

2

FORTRAN and the ART of Windows Programming

... is a book about Programming a Windows application with
Fortran – the easy way – or converting an old Fortran program
into a Windows Application with Silverfrost’s FTN95 and the
ClearWin+ interface to Windows ...

© Edward N. Bromhead 2022.

3

0 Foreword

The fact that you are reading this book means that either you are looking for a cure for insomnia
or - because from the title this isn’t the sort of thing that you would pick up to casually browse
through - then you probably have a real need. If I am allowed to speculate it is that you have a
Fortran program from somewhere that you would like to put a Windows graphical user
interface (GUI) on to, and you possibly looked at some of the alternative ways to do it and
decided that they are far too complicated, or you have just chanced on this at the beginning of
your search. Alternatively, there is the very remotest chance that you are setting out to write a
program from scratch and that you think it ought to have a Windows GUI. If you are writing a
program from scratch, then I still recommend that you do the Windows part in a particular
order, which is the order I have set out in the book. If you are not an old-style programmer then
you probably ought to leave out Chapter 3, and if you aren’t at all interested in my journey, then
just ignore Chapter 28. The rest is still relevant.

0.1 Style

You can find out about me and how I came to be programming first of all in Fortran, secondly
using the Silverfrost compiler and thirdly, how I came to be using ClearWin+ in the first
instance, if you flip the book and read that last chapter (27). It’s probably one that you could
easily leave out, and if you wanted to criticise my old-fashioned approach to Fortran, then
reading it would probably tell you why I do things the way I do.
 Many years ago, I bought a very small and slim paperback book called “The Elements of
Fortran Style” by two American authors: Kreitzberg and Schneiderman. I lost my first copy to a
student who borrowed it and as so often was the case with my books, never returned it. It was
all about things that you might do in Fortran 66, and some of their advice is no longer as useful
as it was back then. I loved that slim paperback book, and eventually found another copy to buy.
I also loved their advice, and just following it, I managed to get the runtime in one of my
programs back in the early 1970s down from three hours to 20 minutes! The lasting advice,
however, which I still follow a scrupulously as I possibly can, is to use a lot of white space in my
Fortran source codes. By doing so, I find that things that I wrote nearly a half-century ago are
still fairly straightforward and I can follow them, which is more than can be said for some
modern codes which when I look at them, my eyes glaze over and I lose interest! That’s a pity,
because I have learnt a lot in the past by reading other people’s Fortran codes, sometimes things
that are useful to do, but far more often, things that I should avoid.
 I don’t think that I am the final authority on how to write Fortran – far from it. I’m also not
the ultimate authority on the ClearWin+ system that is an integral part of the Silverfrost FTN95
compiler package. I’m not connected with the company that markets that particular compiler
in any way other than having a licensed copy of it. You don’t even need to buy a licence to do a
bit of personal Fortran development because the company offers completely free of charge a
Personal Edition. However, if your application is very successful and you want to market it
commercially, then you will undoubtedly want a proper commercial licence if for no better
reason than it will remove the nagging screen that appears when the application starts and lasts
for about six seconds. The other reason, of course, is the obvious legal one. Other than that,

4

there is no actual difference between what you can do with the Personal Edition and the
licensed version.
 My authority – such as it is - to write the book comes from the fact that I have used FTN95
and ClearWin+ to write a number of Fortran applications for Windows. Yes, I have written
applications completely from scratch in this way, but I have also modified existing Fortran
codes of my own to give them a Windows GUI interface. However, I’m rather old-fashioned in
the way that I program Fortran because I started in about 1970 and that is a long time ago. As
L. P. Hartley makes his protagonist Leo say in the opening lines of the book The Go-Between:
‘The past is a foreign country. They do things differently there.’ Fortran has developed a lot in
the half century or more since 1970 and some of the developments I think are brilliant, others
just seem to me a different way of doing things because the Fortran committee that establishes
the standards doesn’t like Fortran as it was; and others I simply can’t see the point of. That isn’t
a philosophical perspective such as one might have if one was a computer scientist – just that
they do things in a way that I either don’t understand or don’t need to.
 I’ll start by showing you how easy it is to write a Fortran application in ClearWin+ and FTN95.
It should whet your appetite, but make no mistake, even though ClearWin+ is a lot easier than
many of the alternative systems, to produce a professional looking windows GUI for your
application will need a lot of programming and take a lot of time and effort. How to get started
is simply to install the FTN95 package. It’s not just a Fortran compiler, it’s three different
Fortran compilers and it has C compilers as well. There are other applications included in the
package including a GUI development environment called Plato, and debugging aids. You don’t
need to use any of those additional applications, in fact I don’t. Instead of Plato, I use a freeware
program file editor called PFE32. That does not mean that there is anything wrong with Plato, it
is just what I am used to. New users should automatically go to Plato and not look anywhere
else. It is far more integrated than any old editor and a bunch of batch files.
 So how easy is it to write a Fortran program to run in Windows? The bare bones are given in
Chapter 1.

0.2 Where to look for specific help

I am simply not going to cover every facility available in ClearWin+, because after a while, you
will get used to looking for the appropriate facilities in the online help file(s), and hopefully, you
will better understand the descriptions therein. My first ports of call in the help file depend on
whether I am looking for the details on something for which I know the name, or where I simply
know the context. If I know the name, then for a format code (explained later), I look in the help
file under the tab ‘ClearWin+’ and then the subsidiary tab ‘Format code reference’, where all the
available format codes are listed alphabetically with links to places in the help file where they
are described more fully. Similarly, when I am looking for a subroutine or function for which I
know the name, I look in the related tab ‘Library reference’. In both of these tabs everything is
listed in alphabetical order. I find the library reference particularly useful in discovering
whether something is a subroutine or a function because that is not always clear in my memory.
Occasionally, I need to look in the ‘FTN95 library’ where there are a range of routines described
that do prove useful, and include both Fortran standard routines and Silverfrost’s own.
 If I am looking for something on the basis of a concept of what it should do then I might look
in the tab ‘Library overview’, where subroutines and functions are grouped by their purposes.
The format codes do not have a similar grouping, but at a higher level (i.e. only one step below
the ClearWin+ tab), the descriptions are grouped by functionality.
 I am an inveterate reader of documentation, and as well as the various help files that are
supplied with the compiler package and which may be either read directly or via an option in
the Plato integrated development environment, some useful files are included with the FTN95

5

installation. Two of these files have the .ENH qualifier, with one of them noting version by
version enhancements to the Fortran compiler itself and the other noting again version by
version enhancements to ClearWin+. When I read the ClearWin+ enhancements file it
sometimes gives me ideas about things to incorporate my programs. It’s a file that you should
skip to the end of first, and read it almost in reverse order, because lots of the earlier
enhancements are actually described fully in the online help files.
 The ultimate point of this book is that since the Fortran Standards Committee in their infinite
wisdom have not seen the need either for integrated graphics, or for facilities to create a good
user interface, let alone a graphical one, then if you want those, you need compiler extensions.
The folks at Silverfrost, and at Salford before them, saw the need for both, and provided them
right from the beginning, providing a Windows-compatible GUI system a long time ago. In my
view, they were smart to do so – smarter than the Fortran Standards Committee.

0.3 Ten steps for a programmer, a giant leap for the application

These are the 10 steps that I have found to work best in modifying an existing Fortran computer
program or creating one from scratch that uses the FTN95/ClearWin+ system to create a
Windows application.

Stage I: Make sure that the computational algorithm works and compiles with FTN95.
Stage II: Create the necessary Windows menu structure to allow different input data

files to be used.
Stage III: Add a graphical back end (meaning display the results of the analysis

graphically).
Stage IV: Implement a variety of graphics options for the back-end.
Stage V: Implement the necessary menus to allow data values from the data file to be

modified.
Stage VI: Modify the File menu to allow saving of the changed dataset.
Stage VII: Produce hardcopy output.
Stage VIII: Implement a method of creating a dataset from nothing.
Stage IX: Create a toolbar to simplify the input of data and to perform other tasks.
Stage X: Generate the help system.

The whole point of doing it in this order is that you are always able to use your program, it just
gets more and more like a Windows application as you complete each stage. However, what you
have to learn, and the complexities of how you do the job, are not the same for every stage. I
have dropped the stage nomenclature for the book, but I have retained the underlying
structure. Each chapter covers one main topic, and I have put in place milestones to reflect what
you will have achieved when you have mastered that topic.
 Of course, there is nothing to stop you doing things in a different order – the choice is yours.
You may not even agree with the order of my 10 stages. And, of course, ClearWin+ is not some
static thing, it is being developed. It has new facilities introduced all the time. There will be
some that have been introduced after I finished writing this book. Equally, I haven't described
everything in ClearWin+, because eventually you will feel so confident that you can go looking
in the documentation for what you want, and understanding how ClearWin+ works, you will
understand the documentation better. At least I hope that you will. However, there is enough
in this book to give you that head start.
 If you decide to program something entirely from scratch, there is still merit in the ten-stage
procedure I have drawn up, although Stage I is effectively producing a traditional Fortran
program. I have the habit of calling such things nowadays as ‘DOS’ programs, noting that in the

6

world of personal computers prior to the introduction of Windows, the operating system was
MS DOS. Another name for them apparently preferred today is ‘console application’. I even have
some advice on how to proceed.
 In the earliest stages of development, I recommend that you initialise your test dataset using
DATA statements or assign statements – I find the latter easier. My recommendation is that you
don’t scatter your initialisations all through your program, but keep them in one place,
preferably in a single subroutine where you can find them and check up on them.
 Make sure that your solution algorithm works for that dataset. Doing it that way means that
you can work on the algorithm(s), and when testing you don’t waste time inputting data values.
Just output your results using PRINT * (or WRITE(*, ...), as I do from force of habit having
used compilers that didn’t support PRINT).
 When you have been able to get sensible results, alter the dataset, and test that. Repeat until
you are satisfied. Then, add the necessary code to read your sample dataset from a file. Check
the values in the file for validity and completeness, but don’t bother with any fancy coding to
do with data file selection, because that pre-empts Stage II. Then join in with the ten steps as
listed above. You will, of course, need to remove your data initialisation statements or
subroutine, but don’t discard it. There will come a time when you need a standard dataset for
quality control purposes. I have a standard dataset that I can use as a template from which to
develop my data models as it is easier to start from a complete dataset and then modify it than
it is to start from scratch.

0.4 There are plenty of facilities in ClearWin+ that I won’t cover

It has never been my intention to cover every facility offered by ClearWin+, but rather to get
you, the reader, started with the system. What is my intention, however, is to give you an order
in which to implement facilities that always gives you the impression (correctly) that you are
making progress, so that you don’t just give up. I hope that in following my sequence you won’t
get to the point of simply not knowing what to do next.
 However, if you do follow my sequence, you will (hopefully) get to the stage where you are
developing a program that you have already given its own Windows ‘look and feel’, and in the
course of which you have gained familiarity with the documentation for the system. Then, you
can root out and use those extra facilities as and when you need them. If my experience counts
for anything it is that the existing documentation is not, and perhaps was never intended to be,
a self-instruction manual.
 I also don’t recommend reading this book from start to finish before embarking on your quest.
Instead, I recommend reading at most a chapter at a time, then follow the steps I have suggested
for your existing Fortran program. In that way you will consolidate your knowledge in what I
hope are digestible chunks.
 I have tried to write in a ‘chatty’ style, and sometimes about my own experiences, so that you
realise that I make no claims to be the arbiter of all knowledge, but instead present my views
from the perspective of someone who has been there before, made lots of mistakes and gone
down many blind alleys, before arriving at something that ultimately works. It is my hope that
you don’t make as many mistakes as I have, or if you do, don’t become disheartened and quit,
but instead, learn from them.

7

Contents

FORTRAN and the ART of Windows Programming ... 2

0 Foreword.. 3

0.1 Style ... 3

0.2 Where to look for specific help ... 4

0.3 Ten steps for a programmer, a giant leap for the application ... 5

0.4 There are plenty of facilities in ClearWin+ that I won’t cover .. 6

Contents ... 7

1 First steps ... 15

1.1 What happens next .. 16

1.2 What the statements do – compiler directives and the PROGRAM statement 17

1.3 What the statements do – oddments of FORTRAN .. 17

1.4 What the statements do – parts of ClearWin+ ... 18

1.5 I did it my way – you do it your way ... 20

1.6 Discussion of HOMER.FOR ... 21

1.7 Some homework, or ‘self-managed learning’ ... 22

1.8 Enhancing the Help menu .. 22

1.9 What’s with the @ symbol? ... 24

1.10 The parts of a Windows user interface ... 24

1.11 Do it your way ... 26

1.12 A note to remember – what are callback functions for? ... 26

2 Enhancing the File menu and incorporating your existing code .. 27

2.1 Your first job – deal with Exit using a standard callback – because it’s easiest 27

2.2 The real work begins – make sure your existing code works with FTN95 28

2.3 Issues to resolve ... 29

2.4 Grey codes ... 30

2.5 File / Open routine ... 31

2.6 That old Fortran program of yours ... 33

2.7 Source code organisation ... 34

2.8 Another way to select the file to open.. 35

2.9 Don’t get caught by historical artifacts .. 36

2.10 What to do with output ... 36

2.11 Now what about picking up those errors in an input file? ... 36

2.12 Buttons .. 37

2.13 %tt buttons ... 38

2.14 %bb and %bn buttons .. 38

8

2.15 Status bar .. 39

3 It’s been a long road, getting from there to here 40

3.1 Some issues about compiling the old program .. 41

3.2 Things FTN95 won’t do for you (not many!) .. 42

3.3 Things that are quite possibly rather different ... 42

3.4 Statement numbers everywhere … ... 44

3.5 Comments and layout .. 44

3.6 DO and CONTINUE .. 45

3.7 In summary ... almost ... 46

3.8 Debugging .. 46

3.9 Character variables ... 47

3.10 Continuations .. 47

4 Graphics in the client area .. 48

4.1 Drawing in a single %gr area ... 48

4.2 Scaling .. 49

4.3 Multiple %gr drawing surfaces ... 50

4.4 The %dw graphics area ... 51

4.5 REAL coordinates and the GDI+ ... 51

4.6 Updating graphics .. 52

4.7 Drawing text – in graphics mode .. 52

4.8 User selection of a font .. 54

4.9 Resizing the graphics area ... 54

4.10 OpenGL ... 55

4.11 Do you know what you want to draw? ... 56

4.12 Your exercise ... 57

5 Going back to the File menu ... 58

5.1 Start with Save in the File menu .. 58

5.2 Save As in the File menu .. 59

5.3 Data file formats ... 60

5.4 Making a backup copy.. 61

5.5 Changing the grey codes ... 61

5.6 What do you really want to save? .. 62

5.7 Keep the user informed... 63

5.8 The most recently used (MRU) files list and dynamic menus .. 63

6 Entering and editing data .. 65

6.1 Dialog windows with data entry ... 65

9

6.2 Enhancing the dialog .. 67

6.3 Design and layout issues: using REAL data boxes .. 68

6.4 Adding and deleting links and nodes.. 68

6.5 Text input and updating graphics .. 69

6.6 The File/New menu command ... 69

6.7 An example .. 70

6.8 Dialog box design ... 71

6.9 Action buttons in the example ... 73

6.10 Option selection: radio buttons and tick boxes .. 74

6.11 Option selection: drop down lists.. 75

6.12 Pop up information dialog boxes ... 77

6.13 Do you wanna be in my gang … .. 78

6.14 Outline boxes ... 78

6.15 Lining things up ... 79

6.16 Backgrounds for dialog boxes ... 79

6.17 ‘Sticky’ dialogs... 80

6.18 A note to remember (again) – what are callback functions for? .. 81

7 Graphical interaction – early steps ... 82

7.1 Mouse clicks .. 82

7.2 Standard mode .. 83

7.3 Full mouse input mode .. 84

7.4 Selecting an item .. 84

7.5 Tool selection ... 85

7.6 Zooming and panning .. 85

7.7 Implementing zoom and pan with block selection .. 86

7.8 A complete example .. 86

7.9 Selection of an option via a menu that pops up at the cursor position 87

7.9 Oh Drat! ... 88

8 Bitmaps and icons, cursors and other resources ... 89

8.1 Resources ... 89

8.2 Drawing bitmaps .. 89

8.3 Back to the About box with a bitmap .. 90

8.4 Using thematic colours .. 91

8.5 Icons ... 92

8.6 Graphic images in a dialog box .. 93

9 Toolbars ... 94

10

9.1 Textual toolbars .. 94

9.2 Textual toolbars using the revised button format (%bb) .. 95

9.3 Do-it-yourself toolbars .. 96

9.4 Success and failure – an example to treat those two impostors just the same 97

9.5 Take it easy ... 98

10 Proper Toolbars, using %tb or %ib ... 99

10.1 General design issues .. 99

10.2 Icon size ... 99

10.3 Icon design for %tb ... 100

10.4 Drawing a set of toolbar buttons for %tb. .. 100

10.5 Programming %tb.. 101

10.6 Exercise with %tb .. 101

10.6 Programming imagebars with %ib .. 102

10.7 Drawing the bitmaps for imagebar buttons .. 103

10.10 Design for %ib and %bb icons .. 104

10.11 What do I want in a toolbar? .. 104

10.12 Some examples from my own work - %ib ... 105

10.13 Tools in a status bar ... 106

10.14 The one easy thing about toolbars ... 106

11 Tabulated output for screen or printer ... 107

11.1 Pre-Windows and early Windows personal computers .. 107

11.2 ‘Printing’ to the screen ... 108

11.3 ClearWin+ windows .. 108

11.4 Printing hardcopy like a lineprinter.. 109

11.5 A ‘print station’ .. 110

11.6 Another idea ... 110

11.7 Take a moment to reflect ... 111

11.8 What to do with large volumes of printout.. 112

12 Printing graphics .. 113

12.1 Printing text only, but in graphics mode. .. 113

12.2 Printing graphics on their own .. 115

12.3 Printing a mixture of text and graphics ... 115

12.4 Some issues while printing graphics .. 116

12.5 Printing from a commercial application ... 117

12.6 Issues relating to Print on the File menu .. 117

12.7 Portrait or landscape? .. 118

11

12. 8 Line thicknesses and font sizes .. 118

12.9 Vector graphics, and saving files for interchange of graphics .. 119

12.10 SVG graphics .. 121

13 Large fonts and dual monitors ... 122

13.1 A workaround .. 122

13.2 Monitor size and aspect ratio ... 123

13.3 Multiple monitors... 123

13.4 Working away from ‘home’ or without the Internet ... 124

14 Inputting and editing tables .. 125

14.1 Looking at Excel for ideas... 126

14.2 Out of grid (or off-grid) editing ... 127

14.3 Data interchange between programs ... 128

14.4 Listview (%lv) – setting up the grid .. 128

14.5 Listview – setting the initial values in the rows .. 130

14.6 Scrolling the contents of a listview control ... 130

14.7 Editing cells in a %lv ... 131

14.8 Fancy effects with %lv ... 133

14.9 Grids of %rs, %rd and %rf ... 133

15 Plotting graphs .. 134

15.1 DIY graphs and charts .. 134

15.2 Symbols and lines ... 135

15.3 Scales, ranges and intervals .. 135

16 When I was younger, so much younger than today ... Help ... 136

16.1 Tooltips ... 136

16.2 Hypertext and the internet .. 137

16.3 Accelerator keys.. 137

16.4 Help yourself .. 138

16.5 Undo and Cancel ... 139

17 Startup and closedown .. 140

17.1 Fortran start up ... 140

17.2 Main window start-up.. 141

17.3 Main window close down (and exiting dialogs) .. 141

17.4 Fortran close down.. 142

17.5 Exit Windows ... 142

17.6 Programs started by clicking on a registered datafile .. 143

17.7 Dropping files instead of Open ... 143

12

17.8 Configuration files ... 144

17.9 Window styles.. 144

17.10 Initial splash screens ... 145

17.11 A note about handles ... 148

18 Some more about graphics .. 149

18.1 Drawing modes and an example ... 149

18.2 Cursors .. 150

18.3 Previewing real-world coordinates ... 150

18.4 More on status bars ... 151

19 I shall say this only once 152

19.1 Dynamic captions ... 152

19.2 Exit Windows ... 152

19.3 Windows styles ... 152

19.4 The minimise icon .. 153

19.5 Pivots and resizing ... 154

20 Beat the clock ... 155

20.1 Analyses with short delays .. 155

20.2 Longer completion times .. 155

20.3 Even longer completion times ... 156

20.4 Answers to my questions ... 157

20.5 The drum beat.. 157

21 Dealing with text ... 158

21.1 Short strings.. 158

21.2 Editing functions... 159

21.3 Drop down selection boxes ... 159

21.4 Other selections .. 160

21.5 Long text blocks .. 160

22 My least favourite bits.. 161

22.1 EXTERNAL routines such as callback functions .. 161

22.2 Foibles .. 161

22.3 Branchview and Treeview (%bv and %tv) .. 161

22.4 OpenGL... 162

22.5 Large fonts.. 162

22.6 Windows changes from version to version ... 162

23 Distributing your application ... 163

23. 1 Installer programs ... 163

13

23.2 User manual .. 164

23.3 Hardcopy devices ... 164

23.4 Multiple monitors... 165

23.5 The program icon ... 165

23.6 Licensing ... 165

24 The 8 elements of ClearWin+ ... 167

24.1 Those 8 things: No. 1, WINAPP .. 167

24.2 Those 8 things: No. 2, INTEGER*4 and REAL*8 ... 167

24.3 Those 8 things: No. 3 ClearWin+’s WINIO@ function... 167

24.4 Those 8 things: No. 4 ClearWin+’s format codes... 168

24.5 Those 8 things: No. 5 callback functions ... 169

24.6 Those 8 things: No. 6 Libraries .. 169

24.7 Those 8 things: No. 7 Standard Subprograms and Parameters for ClearWin+ 170

24.8 Those 8 things: No. 8 Resources ... 170

25 Departing from the norm ... 171

25.1 Why? ... 171

25.2 The graphics ... 172

25.3 What, no File menu? .. 173

25.4 Menus ... 173

25.5 Program organisation .. 173

26 Fools rush in ... 175

26.1 Inter-process communication .. 175

26.2 Shared memory ... 177

26.3 Using all the CPUs... 177

27 How I came to write this book ... 178

27.1 About me .. 178

27.2 In the beginning 178

27.3 A sea change.. 180

27.4 ClearWin+ .. 181

27.5 Geotechnical software .. 182

27.6 The ultimate programming pedestrian ... 182

Appendix A: A routine for plotting arrows ... 184

Appendix B: A routine for plotting grids ... 187

Appendix C: Contouring ... 188

C.1 The simple algorithm .. 188

C.2 Using a plotter .. 189

14

C.3 Labelling the contour values ... 189

C.4 A slight warning (or two) .. 190

C.5 Finite elements and smoothing .. 190

Appendix D: Drawing graphics for finite element method (FEM) applications 192

D1 Drawing finite element meshes with outlines ... 192

D2 Drawing FE meshes with internal shading .. 193

D3 Progressions ... 193

Appendix E: Graphical interaction – the ‘stretchy box’ .. 194

Appendix F: Useful reading .. 197

Appendix G: How and where to look for help documentation .. 199

Appendix H: HOMER.FOR written as HOMER.F90.. 200

Appendix I: The full code for the Listview example ... 202

Appendix J: Efficient use of Fortran (and computing resources) .. 204

Acknowledgements ... 205

15

1 First steps

The easiest way to get to know ClearWin+ is to give it a try. Start by doing the following:

• Install the FTN95 package, either from a licensed copy or by downloading the Personal
Edition from the Silverfrost website

• Run the PLATO integrated development application (IDE)
• In PLATO’s File menu, select New, and from the pop-up dialog, select ‘Fixed format

Fortran file’
• Type the following code into the file. PLATO helps by colouring different parts of each

statement

 WINAPP

 OPTIONS (INTL, DREAL) ! This can be missed out, but is a habit of mine

 PROGRAM HOMER

C -------------

 INCLUDE <WINDOWS.INS>

 EXTERNAL KB_FILE

 EXTERNAL KB_EDIT

 EXTERNAL KB_HELP_ABOUT ! KB means KALL BACK to remind me !

 IW = WINIO@ ('%ca[Homer]&')

 IW = WINIO@ ('%mn[File]&', KB_FILE)

 IW = WINIO@ ('%mn[Edit]&', KB_EDIT)

 IW = WINIO@ ('%mn[Help[About HOMER ...]]&', KB_HELP_ABOUT)

 IW = WINIO@ ('%gr[blue]', 400, 300)

 END

 INTEGER FUNCTION KB_FILE()

C --------------------------

 KB_FILE = 2

 RETURN

 END

 INTEGER FUNCTION KB_EDIT()

C --------------------------

 KB_EDIT = 2

 RETURN

 END

 INTEGER FUNCTION KB_HELP_ABOUT()

C --------------------------------

 INCLUDE <WINDOWS.INS>

 IW = WINIO@ ('%ca[About HOMER]&')

 IW = WINIO@ ('%si*This is a demonstration Windows program&')

 IW = WINIO@ ('%2nl%rj%bt[Dismiss]')

16

 KB_HELP_ABOUT = 2

 RETURN

 END

Once you have typed everything in, then in PLATO’s Build menu, select ‘Start run’. PLATO will
take care of the compilation and linking stages, then execute the code.

1.1 What happens next

What happens next depends on how correctly you typed everything in. If you made syntax
errors, then PLATO will tell you what the errors are, and what line number they occurred in.
You can count from the beginning, or more helpfully, get PLATO to show you the line numbers.
You find the option by:

• Select PLATO’s Tools menu, and select ‘Settings’ (it used to be ‘Options’)
• In the pop up dialog, select the ‘Text editor’ option. The dialog will then change
• Now click on the selection box ‘Show line numbers’
• Close the dialog

It’s always worth having a look at the options, as some of them may suit your style.
 If you have corrected any mistakes, then run the ‘Start run’ option again. Repeat until the
program works. When it does, you will see an application window like this:

Figure 1.1 The basic master window for Homer.for

At any point you can save your work by selecting ‘Save As…’ in PLATO’s File menu. I have saved
my copy as HOMER.FOR, just to go along with the Greek theme started with PLATO. You can save
it under any name you choose.
 A point to note is that if you are running things from a Personal Edition installation, you will
see the reminder pop up that it is the free version. Apart from this pop up, the facilities are
exactly the same as for the licensed edition.
 With the very simple code (HOMER.FOR) you have most of the elements of a fully-fledged
Windows Application master window – see Figure 1.1. OK, I’ll admit that it doesn’t actually do
anything, and it is missing toolbars and a status line – and, although you can drag the window
round your screen by grabbing the caption bar, the window isn’t resizable, but the elements are
there. What remains is to learn how the different elements work, and how to program them. I

17

suppose that I’d better explain what the lines of code in HOMER.FOR actually do. The explanation
is in the next section.

1.2 What the statements do – compiler directives and the PROGRAM statement

WINAPP : The first two lines are compiler directives. This means that they aren’t Fortran, but
tell FTN95 how to go about its business. The first line contains the directive WINAPP. That tells
the compiler to compile this as a WINdows APPlication. You don’t have to write a Windows
application, and if you’re compiling an old Fortran program then just leave it out. If you put
WINAPP into your old Fortran program, then instead of producing its output in a command
window or ‘DOS box’, the output will go into a nice Windows text window. If you are going to
program a proper Windows application and use ClearWin+, then you need WINAPP, but even so,
you will surely want something a lot smarter than simply a program where the output is black
on a white background rather than the other way round!

OPTIONS (INTL, DREAL) : the second directive line tells FTN95 to use 4 bytes for INTEGERs
and 8 bytes for REALs by default. If you use this directive, then FTN95 stops being standard
conforming, because there is no longer a higher level of precision for real variables and a few
other things, but it does make programming simpler. Quite a lot of old programs use just the
standard integer length and the standard real-variable length, and this just sets them for you in
a way that 32-bit Windows1 demands.
 Once again, you don’t necessarily need to use this directive. You can set FTN95 up to treat
those lengths as defaults (which is what it does if you install FTN95 with default settings), or
you can give them on a command line when invoking the compiler. One of the good things about
using these directives is that immediately you try to compile your code with a different
compiler it will throw up errors, and that will remind you that once you have sunk a lot of time
investment into a ClearWin+ program you are going to be needing to use FTN95. You could also
declare the type of every variable and array in your program – you must do it your way.
Incidentally, there aren’t any REALs in HOMER.FOR – it’s there for the future!
 I have followed the directives with a blank line. I quite like laying out my programs with blank
lines, and I do so to space the program into logical groups. There was a time when you weren’t
allowed blank lines, and anyway if you were programming on punched cards, blank lines got in
the way a bit. A bit? I should say a lot, if you were limited to jobs of 600 cards, including the
program and its data, as I once was as a student. I’ve used them all the way through this program
demonstration particularly to sub-divide the source code into separate routines’ sections and
also into logical blocks.
 To save anyone typing in the program, it is downloadable along with the other code fragments
in this book. A version in a more modern style of programming called HOMER.F90 is also
downloadable, or can be typed from Appendix H.

1.3 What the statements do – oddments of FORTRAN

PROGRAM HOMER : this statement is the header for the main program routine. I have
underlined it because that’s another one of my programming habits that I find useful. I also
underline all the headers for subroutines and functions. The underlining is done with a
comment line starting with the letter C in column position 1. If you like the idea, but don’t like
comments beginning in column one, then you can use the exclamation mark symbol (!), and
start your comment anywhere on the statement. In fact using an exclamation mark ! means

1 You could use the 64-bit compiler option in FTN95. My advice is not to, especially early in the development process. The
memory limitations of 32-bit won’t bother any program from even only a few years ago.

18

that you can begin a comment anywhere you like in a statement, but then from the symbol ! to
the end of the line is all comment. It’s a facility that was introduced with later versions of
Fortran and is something that you probably will find very useful if you haven’t come across it
before.

INCLUDE <WINDOWS.INS> : The next statement tells the program to look for definitions of
various things to do with ClearWin+ in an include file2 called WINDOWS.INS. it is enclosed in
diamond brackets to tell FTN95 to look in the standard place for system include files which was
set up when you installed the compiler. I’ve followed it again with a blank line.
 My standard programming method is to use the IMPLICIT types, which basically means if a
variable name begins with any of the letters IJKLMN then the variable is INTEGER, and if it begins
with any other letter, then the variable is REAL. I quite like this because it enables me, years or
even decades after I program something, to just look at a variable and know what type it is.
Many of the current authorities on Fortran programming think that IMPLICIT type is a terrible
idea, and that you should use the statement IMPLICIT NONE, and then declare all the variables
that you go on to use by their types. There’s nothing to stop you doing that if you want, but I
won’t do it, partly because I have both a habit and preference, and partly because it makes all
the examples enormously long.
 WINDOWS.INS is actually an include file that includes a whole load of code, most of which you
don’t need. Eventually, you may want to include only the bits you need, but at first, include the
whole lot – it’s easier that way.

1.4 What the statements do – parts of ClearWin+

WINIO@ : a big feature of ClearWin+ is the integer function WINIO@. FTN95 almost always puts
the @ symbol at the end of the name of a routine that is provided as part of the package but isn’t
part of standard FORTRAN. It’s because @ isn’t part of the FORTRAN character set. In later
versions of ClearWin+ you can use $ instead if you wish. The function is declared as INTEGER in
WINDOWS.INS.
 WINIO@ provides a sort of wrapper with a FORTRAN syntax for many of the functions that are
part of Windows. The parameters supplied to WINIO@ are firstly a character string that contains
format codes (see below), and then a list of other parameters that may, or may not, include the
name of a function (or names of functions) to be executed in response to the user selecting an
option. These functions are named ‘callback functions’, and they are always INTEGER.

EXTERNAL : the next three lines in the program declare some function names to be EXTERNAL,
which means that they will be passed to subroutines or functions by their names. These
functions are used as ‘call back’ functions, in other words, they are what the program has to do
if the user makes a command by selecting an option or making the right kind of mouse click. In
the demonstration program if you select a menu item, then the function contains the code of
what the program does in response. It has to be declared EXTERNAL because the name is going
to be given as a subprogram parameter. In ClearWin+, all of the callback functions are INTEGER
functions. Another one of my programming habits is to prefix all the callback functions with the
letters KB_ which basically reminds me that the name is a callback function name and the K tells
me that it’s an integer, although that does mean that I have to spell callback Kall Back!
 If you like to declare your type names and you don’t want to use a trick like pre-fixing all these
callback function names with an implicitly typed letter, then you can declare all those function

2 You could use a USE statement if that is your preference, e.g. USE MSWIN. FTN95 supports both types.

19

names to be integer as well and under the later versions of Fortran you can combine the type
definition with the declaration that something is external, for example like:

INTEGER, EXTERNAL :: KB_FILE : the double :: is required if you use one of these combined
declarations. I quite like this syntax because it does make the callback routine declaration very
obvious. You can actually string the names one after the other separated by commas or use
continuation lines, but I have declared them all in separate statements for simplicity and to be
rather explicit.

WINIO@ (again): After a yet another blank line, we have an assignment statement with the
result of the function WINIO@ going into an integer variable that I have named IW (see the code).
WINIO@ is a critical part of ClearWin+. The argument list to this function always begins with a
string enclosed in quote marks. Inside that string there are one or more 2-letter mnemonic
codes that FTN95 refers to as ‘format codes’. All of the format codes must be prefixed with the
percent symbol (%). Some of the format codes are followed by some additional information in
square brackets []. Then, there will possibly be more arguments as constants or variables,
including a callback function name if appropriate. The format string concludes with an
ampersand (&) if the formation of a window is going to continue into the next WINIO@ function
call: when a window is to be completed, the final format string should omit the ampersand.
 In the first WINIO@ the format code is %ca, which sets up a new window with a caption bar,
containing what you have put in the square brackets. The caption bar is there to tell the user
what program is being used and is responsive to a click and drag to move the window about on
your computer screen.
 The next 3 WINIO@ function calls set up three parts to a menu bar, with %mn format codes. The
menu titles are given in the square brackets. Just about every Windows program has a File
menu, an Edit menu, and a Help menu, plus several more that vary from program to program.
Traditionally, the File menu is the leftmost menu item, and the Help menu is the rightmost. I
have followed this convention here. When you have developed a full application, you will
probably have many more top-level menu items, but these three will suffice for now. I have put
each top-level menu item in its own WINIO@ statement because that facilitates slipping some
more menu items in later. Hence, taking the menu items one by one, it’s time to examine what
they do.
 As you know from using Windows, when you click on a menu item, a list of commands drops
down. Then, when you click on one of those commands, the program does something. We
program that by means of an INTEGER FUNCTION called a callback function. The caption bar does
not have a callback function because there is no possible program response other than to move.
 For the purposes of the demonstration the File menu and Edit menu callback functions
basically don’t do anything at all. Therefore, those callback functions have virtually no code
except to give a return value to the function. There are three possible return values: 0, 1 and 2.
If you give the return value of zero, then when it is received back, it will close the window that
invoked it. Giving a return value of 1 or 2 does not close the calling window and although 1 is
quite satisfactory, apparently 2 is preferred because it just returns. Using the value 1 makes the
calling window refresh itself.
 In the third WINIO@ call, there is a fledgling Help menu item. Ordinarily, there would be a
comprehensive help file as the first submenu item and the About box comes below a separator.
You tell ClearWin+ that you are dealing with a submenu by nesting the square brackets. Once
you have done that you do not need a callback for the top-level menu, only for any submenus.
The callback routine KB_HELP_ABOUT is the third INTEGER FUNCTION, and it generates its own
window or dialog box (sometimes simply called a dialog). There is a bit of a standard about this

20

particular window where the caption reads ‘About HOMER’. That is followed by first of all a
standard icon (with the format code %si). There are several possible standard icons, the
asterisk calls up Windows’ ‘information icon’, followed by some plain text. Anything in the
format string or a WINIO@ call that is not part of a format code is reproduced verbatim in the
window.
 Finally, after the text ‘This is ‘ etc., there is a button (%bt) labelled with ‘Dismiss’ that is right
justified in the box with %rj, and follows after the text string with two new lines (%2nl). Some
of the format codes can have a multiplier like this, although many cannot.
 The final WINIO@ call in the main program unit sets up a graphics area (%gr) that is initially
coloured blue and which is 400 pixels across and 300 high (it’s a fixed size).

When I said that the application doesn’t do anything, that wasn’t strictly true, because if you
selected the About option in the Help menu it pops up a dialog like this one (Figure 1.2):

Figure 1.2 The ‘Help/About ... dialog has been launched. It looks like this.

1.5 I did it my way – you do it your way

I program in capitals, and use fixed format layouts because I’ve always done it that way. You
must program things your way. So as an exercise, or series of exercises, you should sort
HOMER.FOR out the way you want it. There’s no reason apart from personal preference here, and
I don’t seek to impose my preferences on you. Here are some stylistic changes you might wish
to make:

• If you like to program in lowercase, then edit HOMER.FOR accordingly
• If you prefer free format, then edit HOMER.FOR and save it with the extension .F or .F90 –

don’t forget to let PLATO know that it’s now a free format file
• If you don’t like IMPLICIT typing, then use IMPLICIT NONE and declare the types of all

the variables – and delete the OPTIONS directive. You could use KINDs instead of say
REAL*8

• If you like to program with MODULEs and USE, then replace the INCLUDE line with USE
MSWIN.MOD

On the other hand, you might prefer to enhance HOMER.FOR with your own preferences. Here
are some suggestions:

• Make the %gr area bigger
• Change the initial colour of the %gr area – yellow could be a good choice, or red or green
• Add another menu item – say Options in between Edit and Help – don’t forget that it will

need another callback function
• Put some more text into the About box, including your name perhaps

21

• Change HOMER for something that suits you better, but remember to change it
everywhere. The PROGRAM name does not have to be the same as the source code file
name

Another good thing to do at this stage is to look at the Help menu in PLATO. Don’t be daunted,
you will get to know it better the more you use it.

1.6 Discussion of HOMER.FOR

So far in that example we have used five separate format codes. ClearWin+ contains many more
than that! For example, as well as %rj for right justify, there is also %cn for centre justification.
Past versions of Windows have centred buttons, but as I write the convention is to right justify
them. The button format code %bt can be given a multiplier, for example, %8bt. Ordinarily
without a multiplier, the button is sized to its text label. It may be preferable for you to give
multiple buttons all a specific size so that if you have three or four buttons in a row they are all
the same width, otherwise ClearWin+ will make them all fit their text and they will be of
different widths. Incidentally, there is a habit to put ‘OK’ on a button like this one, but Microsoft
recommends that as buttons usually signify some action, they should be labelled with a word
that signifies the action that you wish to be associated with clicking on that button. Hence, I
have chosen Dismiss rather than OK.
 A question that you probably have concerns what you get for each of the 8 if you do specify
%8bt. ClearWin+ lays things out on a grid, with the vertical and horizontal spacing given by the
current font, which if you haven’t specified anything else is the system font. The system font
changes between different versions of Windows, and in Windows 10 is Segoe UI. The height is
determined from the font definition in a very simple way, but the width of the grid cells is
determined from the average character width, noting that some letters take more space than
others. You can show the grid using a %gd format code. I will put one in a revised version of the
integer function KB_HELP_ABOUT in a demonstration below, but first I want to discuss something
else and that is the ‘new line’ %nl. Essentially, with %nl, the current position in the dialog simply
changes downwards by one of the grid lines. If you don’t have %nl, then the next position is to
the right of whatever you did previously. Sometimes, you will find that you need to insert lots
of %nl new lines, and then you would be better off using ‘form feed’ %ff.
 Here is that example with the grid specified:

 INTEGER FUNCTION KB_HELP_ABOUT()

C --------------------------------

 INCLUDE <WINDOWS.INS>

 IW = WINIO@ ('%ca[About HOMER]&')

 IW = WINIO@ (‘%gd&’)

 IW = WINIO@ ('%si*This is a demonstration Windows program&')

 IW = WINIO@ ('%2nl%rj%bt[Dismiss]')

 KB_HELP_ABOUT = 2

 RETURN

 END

I recommend putting as few format codes in any one WINIO@ call as you can, especially
something like %gd, because that is really a debugging aid, and you will want to comment it out
for production code.

22

Another question that you are probably asking yourself is “why on earth have we started with
the About box (or Help/About – which means the About option in the Help menu) which is surely
the most inconsequential part of a Windows program?”
 The answer, of course, is that its sheer inconsequentialness is why we start there. The only
thing about the About box is that it pops up right in the middle of the computer screen and only
goes away when you press the Dismiss button (or click on the close button marked with an X at
the top right-hand corner of the window). It does not have a minimise or maximise button and
it doesn’t actually do anything. You can also use italics or bold, which you switch on with %it or
%bf, and switch off with %`it and %`bf. The ‘off’ switches use a grave accent as a modifier. In a
similar way, %ul starts underlining, and %`ul stops it. There is also superscript (%sd) and
subscript (%su) that work in the same way, being switched off with a second format code with
the grave modifier.
 Ordinarily, an About box will contain at least one bitmap image, representing the logo of the
application, although including bitmaps is left to later in the book. The About box is a good place
to put copyright information for the application, to make a note of programmers’ names, and to
credit anyone whose help has been utilised, for example, if they have provided any cursors or
icons, or drew any bitmaps for you.
 One final thing is that the sub-menu item has the three dots of an ellipsis (...) which means
that the menu item launches one or more dialogs. We never use the ellipsis on a top-level menu
item, and the drop down menu is one step down from the top level.
 My advice is to experiment at this stage with very simple modifications to the About box,
simply to get the hang of putting format strings into WINIO@ function calls.

1.7 Some homework, or ‘self-managed learning’

In the Help menu of PLATO, you can select the ClearWin+ option. The first thing that you are
shown is an alphabetical list of all possible format codes. Don’t be daunted: there are very many
of them, from %ac to %wx. Each one is hyperlinked to a description.
 Look at the descriptions for the format codes used so far. What you will probably discover is
that each has a number of options that I have not described. The reason for that is because right
at the start you don’t need to know everything. Are the descriptions enough, on their own, to
let you write your application? Are they a self-instruction manual? The answer to both
questions is probably ‘No’, but the deeper you get into the process, the more helpful you will
find the sort of information given.
 There are several other places where you can find the same Help information. One of those
places is the Silverfrost website. Another place is a file named FTN95.CHM which is located in the
installation file system for FTN95. On my system, it is at:

C:\Program Files (x86)\Silverfrost\FTN95\FTN95.chm

The way I work is to have a link to that file on my desktop. I often refer to it!

1.8 Enhancing the Help menu

In the example so far, we have had only a single submenu item and that is the submenu to the
Help menu. Ordinarily, we would expect the first submenu item to direct us to an online version
of the user manual. We can update the WINIO@ line as follows:

 IW = WINIO@ ('%mn[Help[User manual ...,About HOMER...]]&'

23

followed by the two callback function names. The length of the statement would then exceed
column 72, and would require a continuation line. If we wanted a separator in between the two
sub-menu items we would include it like this:

 IW = WINIO@ ('%mn[Help[User manual ...,|,About HOMER ...]]&'

(followed by the callback functions that I have left out).

Personally, I think that having too many menu items in the same WINIO@ call has the potential
to cause errors and would therefore suggest that it is better to spread the menu over several
statements.

 IW = WINIO@ ('%mn[Help[User manual ...,|]]&', KB_HELP_MANUAL)

 IW = WINIO@ ('%mn[[About HOMER ...]]&', KB_HELP_ABOUT)

Starting the menu command %mn with a double opening square brackets is information that the
format code is effectively continued at that particular level, i.e. first level of submenu in this
case. Of course, you must not forget to put the new callback function name in an EXTERNAL
statement, and also you have to write it. This we could, for the purposes of your
experimentation, simply give it the same callback function as the About box but that that would
be taking the soft option.

Figure 1.3 The menu ‘Help’ has been selected, dropping down the two items with a separator, and the lower one
has been selected.

Some versions of Windows ago, Microsoft changed the previous standard help utility which
used files of type .HLP to a different utility called compiled hypertext help, which run through
the program named HH.EXE and uses a compiled hypertext file of type .CHM. There are no
utilities in FTN95 for creating CHM files, and you will need a utility to do so. There are various
freeware options on the Internet and several for which a licence fee is payable. I’m going to
assume that for the time being you do not actually have a CHM file for your application and so
we can make use of one that comes with FTN95. We will use FTN95.CHM. It is easier to specify
if you copy it from its default position and deposit it in your working directory, but you can
invoke it from anywhere if you know the path. Just to make the Fortran lines shorter I will write
the path into a character variable. Then, the callback routine becomes:

 INTEGER FUNCTION KB_HELP_MANUAL()

C --------------------------------

 INCLUDE <WINDOWS.INS>

 CHARACTER*(128) FILEPATH

 FILEPATH = 'C:\Program Files (x86)\Silverfrost\FTN95\FTN95.chm'

 CALL START_PROCESS@ ('HH.EXE', FILEPATH)

 KB_HELP_MANUAL = 2

 RETURN

 END

24

What START_PROCESS@ does is to launch the program that is specified in the first argument with
the contents of the second argument as the remainder of the command line. To explain this
rather better, let me take you back to the early days of time-sharing systems or indeed, to the
PC in the days of MS-DOS. You might be able to start the program (imagine it is BOB.EXE) with
its own datafile BOBS_TEST.DAT as follows:

C:>BOB BOBS_TEST.DAT (where the program ‘knows’ that the data is in a file)

Or

C:>BOB <BOBS_TEST.DAT (where the program ‘thinks’ that the data will come from the
keyboard, but you have it in a file instead)

In effect, START_PROCESS@ tells Windows that you are invoking program HH.EXE with the
name of the file that HH.EXE is supposed to open.
 There is a related subroutine named START_PPROCESS@ - (note the double P) - the difference
being that the first of them launches the program, in this case the hypertext help program
HH.EXE and that takes over from your program which will not continue until HH.EXE is closed,
whereas the second variant launches HH.EXE as a completely independent process which does
not need to be closed before control is returned to your program.

1.9 What’s with the @ symbol?

It’s a shorthand to show that the routine isn’t part of Standard Fortran, but instead is a
Silverfrost ‘special’. You can get ClearWin+ to run with other compilers, but they don’t recognise
the @ symbol because it isn’t part of the Fortran character set (except in strings) and you have
to use $ instead. My advice is to stick with @.

1.10 The parts of a Windows user interface

At some stage, you need to decide what your application will look like, what it does, and how it
interacts with the user. Many Windows programs start by putting up a simple graphic in the
centre of the screen and on top of all other applications. This at least tells you that something is
happening while the program loads – which can be slow depending on the computer it is
running on, and whatever else it is doing at the time. When the main window has loaded, this
initial graphic can be closed. Some applications, for example CorelDRAW!, allow you to open
files from the initial splash graphic. That isn’t very difficult, but it is always best to start with a
simple example and get more complicated as you go along. Chapter 17 shows you how to get
the splash graphic to show, and then to go away when it is no longer wanted.
 However, an initial splash graphic is just window dressing. What you are going to want to do
is to prepare an application in a standard Windows form. When this application is invoked, it
will look something like Figure 1.4 below.
 If you are familiar with the classic Windows application, you will recognise the various
features shown in the figure. The whole graphic interface is contained within some sort of a
frame which is shown by thick black line. The standard Windows frame varies from version to
version of Windows, and in some of them it has rounded corners while in other versions the
corners are square. The frame may also vary in thickness and in colour. Everything that you can
do in your application is contained within that frame. The application window can be resized
with the mouse, as the mouse pointer changes as it moves over the frame. Then, with the left
button held down, the frame edge can be dragged to a different size and shape, which it adopts

25

when the button is released. There are special sensitive zones in the corners of the frame. If you
are using a very early Windows version, only the right side and the bottom of the window could
be grabbed for resizing. In those older versions there was often an icon in the bottom right
corner of the screen on what I have described on the Figure as a status line. This icon is no longer
required, and it may in fact confuse the user accustomed only to the more recent versions of
Windows.

Figure 1.4 The basic elements in a Windows application as seen by the user when the program is operating.

What I have described as the graphical workspace is the ‘client area’, and it does not need to be graphical at all,
but for a professional appearance, it will be.

Along the top of the window is a coloured bar that contains the application name and optionally
the name of the current data file in use. In the same way that grabbing the frame allows you to
resize a window, and grabbing the caption bar allows you to move the window around the
screen. At each end of the caption bar there are some graphic icons that are clickable. The one
on the left invokes the system menu, of which more later. The icons on the right of the caption
bar include icons that will minimise the screen, maximise it so that it occupies the entire screen,
or to close the application altogether. Our caption bar in the example only has the close button,
and the caption was fixed at the name of the program only.
 Running in a row underneath the caption bar are the top-level menus. The individual items
are also clickable, and if clicked will usually drop down a list of further options. The whole set
of these menus makes up the menu bar. There is a standard for what the menu items start and
finish with. The one on the left is normally File and the one on the extreme right is normally
Help.
 Continuing under the menu bar you are likely to find a feature called a toolbar. The toolbar
contains icons principally, but it may contain some text as well, and these icons are clickable
and represent shortcuts to things you can find in the drop-down menus. You might also find
that there is a toolbar vertically down the left-hand side of the window, or in exceptional cases
down the right-hand side or both.
 Some applications also have a reserved area right at the bottom of the screen which we call a
status line (or status bar) and in the status line you will find information about the data file you
are working on other than its name. So, for example, in Microsoft Word you might find the
current page number, the total number of pages, the total number of words and the count of
words in any highlighted block of text, the language in use, and some iconic representation of
such things as the view you have selected and the zoom factor for viewing the current

File ... other menu items ... Help - this is the Menu bar

Optional horizontal tool bar

Optional status line

Application name and maybe current datafile name - this is the Caption bar

Optional vertical tool bar

Graphical workspace

System menu icon Minimise, maximise and close buttons

26

document. Obviously that selection of information is right for a text document, but other
applications might need different things displayed down in the status line.
 Finally, the remainder of the window is dedicated to a work area in which you can input data
and view results. Such an area is called the client area, and as remarked in the Figure caption
above, it may not be graphical at all. Just about all my Windows programs use as big a graphics
area or drawing surface as I can manage to provide.
 Again, depending on which version of Windows you are using, the application window may
reserve space outside the frame for visual effects like drop shadows. Recent Microsoft
applications use what they call a ribbon, which is essentially a combination of the menus and
toolbars. As I write this document, it is not possible to simply generate ribbons using ClearWin+.
 There are several modes in which applications may work. What I’ve described above is a very
simple, classic, Windows application. There is also something called a multiple document
interface (MDI) in which you can work on more than one data file at the same time, switching
from one to the other at will. You can program MDI applications if you want in ClearWin+, but
this is beyond the simple introduction that I’m giving in this tutorial book. Another approach
used quite commonly is to generate multiple copies of the application, each one containing a
different data file. I refer to these things as data files, but Microsoft refers to them as documents.
Perhaps I ought to do the same!
 Notice how the example program, although short, exhibits many of the features that you
might expect in a Windows program.

1.11 Do it your way

It’s always a good idea to try things out for yourself. Part of that learning process is also to
discover what doesn’t work. Then again, it’s not my intention to duplicate what appears in the
Silverfrost help files. You really do need to gain familiarity with those.
 Sometimes you discover that your knowledge of Fortran isn’t that great, either. That’s why
you need to have a Fortran reference of some sort to hand.

1.12 A note to remember – what are callback functions for?

Most controls can have an associated callback function – menu items must have a callback,
unless selecting them invokes a further submenu. The reason for the menu criterion is that
menu selections cause actions to be taken.
 In a dialog, the only action buttons are recognisably buttons with clear action labels. Many of
them don’t need callback functions, because selecting them simply closes the dialog, and the
user can determine which button was pressed and therefore what action to take by inspecting
the return code. It is only an action button that may not close the dialog which needs a callback,
for example, an action button labelled Clear may require various selections made in the dialog
to be changed to default (usually zero or blank) values and the dialog is not closed.
 Other controls, such as data input boxes, radio buttons and tick boxes, sliders and so on may
have callback functions. However, such callback functions should only be used where one
option being selected has an impact on other controls in a dialog, and should not be used as to
make those controls into action buttons.
 If you don’t understand these suggested restrictions, don’t worry. We haven’t got round to
dialog windows yet, and won’t until Chapter 6. When we get to the end of Chapter 6, I will
remind you of this section. You should understand it better then, and I will give an example
there.

27

2 Enhancing the File menu and incorporating your existing code

The way in which we are going to incorporate your existing Fortran code in your application is
initially by fleshing out the File menu. The File menu is a fairly standard part of any Windows
program, and it will normally contain at the very least the following settings:

• New
• Open
• Save
• Save As
• Print
• Exit

If you look at anyone of your favourite applications other than anything in the Microsoft office
suite (because Microsoft tends not to follow its own recommendations) then you will see the
above list and other items. You will also probably see separators above and below Print
although Open, New, Save, and Save As will all fit in the same block without a separator. Some of
the menu items are followed by an ellipsis, or three dots, which means that the menu item opens
up to a dialog, and doesn’t just perform an action.
 The first 4 options are all about your program’s dataset. New is there to let you create a
dataset from scratch, Open to bring a pre-existing dataset into your program. Save is an option
to save your dataset – either because you created it from scratch, and don’t want to lose it, or
because you imported an existing dataset and modified it, and want to save the changes over
the top of the pre-existing dataset – while Save As is where you want to save that modified
dataset with a new name, which will preserve your original data.
 Print, on the other hand, is about several things: getting a hard copy of your dataset for one
thing, or saving your results. The action word Print has its origins in the past, where printing
was the main way of saving the results of an analysis. Saving to a file would be done with an
option when selecting a printer, such as ‘print to file’. Personally, I think that a more modern
action word might be ‘Reports’, but we’ll stick to Print for the time being. The point is that
everything down to Save As is about your dataset.
 The final one is Exit. Now Exit is a bit superfluous, because there is the ‘Close’ box in the top
right of the Window (see Figure 1.1 in the previous Chapter) but Windows applications often
have multiple routes to the same destination.
 What we are going to do first is to concentrate on only two of the submenu options: Exit and
Open. Why? Because one of them is dead easy, and the other is the way to implement much of
your original, pre-Windows, programming.

2.1 Your first job – deal with Exit using a standard callback – because it’s easiest

Your first job in enhancing the File menu, with a lot of submenu items rather like we enhanced
the About menu, which I suggest that it is best to do by adding callbacks that initially do nothing
for New, Open, both Save options and Print. For Exit we are going to use something new, which
is a standard callback. A standard callback saves us from having to write a whole callback
function. We have the choice of two functions for this option: ‘EXIT’ and ‘CONFIRM_EXIT’.
Using ‘EXIT’, the menu declaration would be:

28

 IW = WINIO@ (‘%mn[[Exit]]&’, ‘EXIT’)

When you select that item from the File menu, the program closes. You can probably see the
downside of that, as to select it by accident, your program will close abruptly, and if you had
work in progress, it will be lost. At least ‘CONFIRM_EXIT’ will ask you whether to shut down or
not. You should try both. In the long run, neither is really what you want, because you will
eventually want to see if your user has work in progress that he should really save first, but it
will do for now.
 The on-line help file contains a list of standard callbacks for reference and you may like to
take a look now to see what else is there. Don’t worry if there seems to be a lot of options that
you can’t see a use for at the moment.

2.2 The real work begins – make sure your existing code works with FTN95

Now, we have come to the point where you need to start integrating your existing Fortran code
into this Windows/ClearWin+ framework. Obviously, it pays to check that your existing Fortran
code will compile and run using FTN95. The chances are that it will, but it won’t if you have
used any of the small number of things that have been deleted from the Fortran standard, or
have used some third-party facilities. You need to root out and replace those things if you have
used them, and one of the easiest ways to find out is simply to try it and see. Compilation will
also fail if your code contains compiler directives (for a different compiler) that FTN95 does not
recognise.
 Some advice from me at this point is not to become too obsessive about bringing your Fortran
up to date, and certainly don’t try to add extra facilities at this stage. Stick with whatever data
structures your code already has.
 If you run into a lot of problems, then you might want to read Chapter 3 to understand some
of the problems you encounter, but I can’t solve all of them as I’m not psychic! On the other
hand, (hopefully), you will meet few problems and then can move on.
 What you may have is that old-fashioned procedure (Method A) where you:

1. Read in the complete dataset for whatever analysis you are going to do

2. Do the analysis

3. Print out the results

because linear programs like this do fit the File/Open paradigm pretty well. Now, if your
program has any sort of conversational input, then you must set that aside for the moment, and
if there isn’t a routine for reading in the dataset all in one go, then that is something that you
have to write.
 There are some Windows programs, with MS Word and CorelDRAW! fitting into this category,
where the input file is the result, and the application exists to ‘polish’ that input or add to it,
those sorts of programs still have to read in the complete dataset, but what they do (Method
B) is to:

4. Read in the complete dataset

5. Allow the user to change it

6. Print out the results

Of course, in Method A, there are intermediate stages in which you can alter the input data, and
in both methods there will have to be a way to save it, but those are things that I will deal with

29

later. Let’s just imagine that your program is of the method A type. If it is, then you probably
have the right sort of structure to just accept MS Windows way of getting a file name to open
instead of whatever you did previously.
 It is probably a good time to sort out all the subprograms into how they fit in the three stages
listed above.
 A friend of mine refers to programs that follow Method A as calculating programs, and those
that follow Method B as processing programs. Mostly, I write programs of the Method A type,
but many of the applications I use that were written by someone else fall into the Method B
category.

2.3 Issues to resolve

Several things flow from the number of items in the File menu, and one of them is the large
number of callback functions which you are likely to require. Indeed, you may well want to have
a large number of top-level menus rather than the 3 in the demonstrator program. Microsoft
recommends a maximum of 10, but in my experience 11 or 12 is still not too confusing for the
user, whereas any more than that can be. Imagine then that you have 10 top-level main menu
items each with 6 submenu items and possibly even some sub-submenus. You are likely then
to find that you have 50 or 60 lines of WINIO@ function calls matched with 50 or 60 callback
functions. The menu lines as WINIO@ calls are going to fill up the main program segment to an
inordinate degree because all of those lines will need perhaps a similar number of toolbar
entries and all the instructions about what to do with the graphics area which at the present
moment is a fixed area coloured blue so that you can see it.
 You may also need to undertake some tasks when the main window opens, and you may have
other tasks when you request that main window to close, such as saving the user’s work. All of
this means that if you put everything in the same subprogram (or worse, in the PROGRAM routine)
it will become very long and therefore difficult to follow and, if necessary, to debug. My
recommendation is therefore that instead of putting everything in one routine, you divide the
WINIO@ calls into logical groups and put each group in its own subroutine.
 Typically, then, you might have one subroutine for start-up and close-down, another
subroutine for the menus, another subroutine for a toolbar, and another subroutine for the
graphics.
 There is only one issue with dividing the WINIO@ calls across several subroutines and that
relates to the way FTN95 closes down. As the windows close, WINIO@ returns a value, and it has
to find somewhere to put that value. In my program example, that location is the integer
variable IW. IW must be available when FTN95 tries to put a value into it. There are multiple
ways of ensuring that, and for me the simplest way is to put IW into a COMMON block declared in
the main program routine and therefore one of the last things to disappear. Another option is
to use the SAVE statement to save IW. A third method is to use the compiler directive SAVE to
make sure that all local variables are saved. The last option is not very standard Fortran, but
you may find it more useful in the short term and also if you don’t like COMMON.
 A benefit of putting each menu item in a separate WINIO@ call is that you make it easier to slip
in extra menu items, both as a top-level item, or in a sub-menu, but some programmers put lots
of format codes into a single WINIO@ call, which then needs loads of continuation lines. You must
do it your way – I can only advise, although the advice comes from experience of getting in a
muddle, failing to learn the lesson, then getting into a muddle again.

30

2.4 Grey codes

Now, we come to an important issue, which is that at program startup, the New and Open
options are enabled, but the Save and Save As options have to be disabled while there is nothing
to save. Otherwise, you have to write a routine to tell the user why he or she can’t save, and that
isn’t what a Windows user will expect. Enabling and disabling menu items, and for that matter,
all manner of other Windows controls, is done with what is colloquially called a ‘grey code’. A
grey code is 1 for enabled, and 0 for disabled, which means that 0 is ‘greyed out’.
 Incidentally, the Help menu items are never disabled, and so they don’t need grey codes. The
grey codes are stored in a set of INTEGER variables, or more conveniently in an INTEGER array. I
tend to put them in COMMON so that they can be accessed from anywhere I want them to be set
or reset. To cope with future enhancements to the File menu, I suggest making the array 10
items long. I will call it MENU_GREY_FILES. You are going to have to set the grey codes for Open
and New to 1 initially, and for Save and Save As to 0. Print, similarly, has to be disabled when
there is nothing to print. Exit, presumably, is always enabled. You could disable it when the
work is unsaved, but the close box at the top right of the caption bar cannot be disabled, so there
is no real point in disabling, or greying out, File/Exit.
 I have found it convenient for my applications to cope with a single dataset at any time, and
therefore usually have a Close option as well, but for the time being, I will avoid that. However,
with an eye to adding Close and a recent files list, I will assign positions in the array as follows,
with some gaps for other potential entries to be added to the Files menu:

• Open 1 value = 1
• New 2 1
• Save 3 0
• Save As 4 0
• Print 7 0
• Exit 10 1

Basically, in my style of programming, the grey codes go into a named COMMON block, which is
declared initially with the default values, and is declared in every routine where the grey codes
need to be accessed for inspection or to change them. Sometimes there are relatively few things
that need grey codes, and the whole lot go into one COMMON block, but programs with lots of grey
codes benefit from having separate COMMON blocks.
 Next, there is a question of where to do the assignment. I don’t like BLOCK DATA, and anyway,
it is frowned upon or ‘deprecated’. Maybe it is obsolete too. You could do the assignment in a
DATA statement. However, the best place to do any and all initialisations is in an initialisation
subroutine. That has the advantage that if your user wants to run a second problem, all the
program needs to do to reinitialise itself is to run the subroutine again. I tend to call my
initialisation subroutine BLOCK_DATA, which gives me a hint as to what it actually does!
 So, with the grey codes pre-initialised, we can begin to flesh out the menu. I will assume that
the callback functions are appropriately named, and that they have been declared to be
EXTERNAL. With the grey codes pre-initialised, we can begin to flesh out the menu. I will assume
in the following code fragment that the callback functions are appropriately named, and that
they have been declared to be EXTERNAL. Then, we might have:

 INTEGER, EXTERNAL:: KB_FILE_OPEN

 INTEGER, EXTERNAL:: KB_FILE_NEW

 INTEGER, EXTERNAL:: KB_FILE_SAVE

 INTEGER, EXTERNAL:: KB_FILE_SAVE_AS

31

 INTEGER, EXTERNAL:: KB_FILE_PRINT

 INTEGER MENU_GREY_FILES(10) ! where the grey codes are stored

Then, the WINIO@ subroutine calls are:

 IW = WINIO@ (‘%mn[Files[Open]]&’, MENU_GREY_FILES(1), KB_FILE_OPEN)

 IW = WINIO@ (‘%mn[[New]]&’, MENU_GREY_FILES(2), KB_FILE_NEW)

 IW = WINIO@ (‘%mn[[Save]]&’, MENU_GREY_FILES(3), KB_FILE_SAVE)

 IW = WINIO@ (‘%mn[[Save As ...]]&’, MENU_GREY_FILES(4), KB_FILE_SAVE_AS)

 IW = WINIO@ (‘%mn[[|,Print]]&’, MENU_GREY_FILES(7), KB_FILE_PRINT)

 IW = WINIO@ (‘%mn[[|,Exit]]&’, MENU_GREY_FILES(10), ‘EXIT’)

The grey code integers have to be predefined individually to have values of either 0 or 1.

2.5 File / Open routine

ClearWin+ and Windows don’t actually open files for you – you have to do that with the Fortran
OPEN statement. What ClearWin+ does is to launch a standard Windows file selection dialog from
which you can pick a file name. This is what Windows users expect, but in principle there is
nothing to stop you from designing your own system, for example getting the user to type in a
fully-qualified file name (fully-qualified means that you give the path as well). The problem with
that approach is that it won’t be familiar to Windows users, and they can more easily mistype
the name. Here is a minimum routine that works the Windows way so that the points can be
explained.

 INTEGER FUNCTION KB_FILE_OPEN()

C -------------------------------

 CHARACTER*(256) DATA_FILE, DATA_PATH

 CHARACTER*(20) DATA_FILTERS(2), DATA_SPECS(2)

 INCLUDE <WINDOWS.INS>

 DATA_PATH = 'C:\DATA_FOLDER\' ! defines first location to look in

 DATA_FILE = ' ' !

 DATA_FILTERS(1) = '*.DAT' ! look firstly for .DAT files

 DATA_FILTERS(2) = '*.*' ! then look at all files

 DATA_SPECS(1) = 'DATA FILES' ! display what files are

 DATA_SPECS(2) = 'ALL FILES' !

 CALL GET_FILTERED_FILE@ ('Open data file', DATA_FILE, DATA_PATH,

 & DATA_FILTERS, DATA_SPECS, 2, 1)

 OPEN (50, FILE=DATA_FILE, STATUS='OLD')

C … check that a filename was actually selected …

 IF (DATA_FILE .EQ. ‘ ‘) RETURN

C … actually reading the file goes in here …

 KB_FILE_OPEN = 2

 END

So what is going on here? Well, finally, we are going to use the Fortran OPEN statement, but
before that, we are going to get a filename using the GET_FILTERED_FILE@ subroutine, which is
a standard part of ClearWin+.

32

The parameter 2 given in the GET_FILTERED_FILE@ subroutine tells it that you have defined 2
‘filters’ and their associated ‘specifications’, namely to look for all files with *.*, and to look for
*.dat files that are specific to this program. The initial path is given with the variable that I
have named DATA_PATH, and the filename is returned in DATA_FILE, which you have to declare
as a long character variable, because it might be returned with a long associated path. For an
input file, it must exist already, so the final parameter is set to 1 to make that so. Otherwise, say
for an output file (which we will get on to in due course) it could be set to 0.
 If you have set a ‘must exist’ flag then the file must be one that already exists, so the next
Fortran statement is to open the file. Then there isn’t very much chance that the file will not be
found. However, if your program dithers around between getting the filename and opening the
file then there is always a chance that if the file is on removable media then the user might
actually have removed it!
 A further issue is that if the user selected ‘Cancel’, so that no file was actually selected, then
you run the risk of trying to open a file named according to the initial contents of the character
variable DATA_FILE. It is therefore advisable to enter the file selection procedure with this name
set to (say) a blank string, and then you can check that a file with a genuine name has been
returned before proceeding. You have to do this check for yourself because the subroutine does
not report ‘that Cancel’ was selected.
 I will leave it up to you to flesh out what your program does after the file is opened, but my
recommendation is that after you finish reading from it then you use the CLOSE statement to
release the file. The reasons for that will become clear later on. It is highly likely that if you are
adding a ClearWin+ Windows interface to an existing program that reads its data from a file,
then you will already have a subroutine for reading in the data and checking that it is valid for
your program. Perhaps it is time to integrate that into the File/Open callback routine. You will
probably discover that your old procedure for checking the data is simply to reject the file if
there is an input error. This leads inevitably to the Fortran STOP case. I suggest that this is not
good enough for a Windows application and therefore all the READ statements need to have END=
and ERR= options and that you need to have the procedure in place just in case the input data
has been corrupted in some way.
 Probably the correct approach with END= and ERR= is to pop up a little window using a
standard icon and containing an error message and the button which will take the user back
into the KB_FILE_OPEN routine just in case they want to try to open a different file. The problem
of unreadable files is compounded if you choose a very commonplace file extension such as
.DAT, for the simple reason that there will be many files on a computer system that are not input
data for your program. Even if you pick something unusual as an extension, there is always the
thought that someone has been there before. I therefore recommend that the first line of an
input data file for your Windows version of your program contains information that confirms
that it is an input data file for your program, and also gives the version number of your program
that it is formatted and laid out for. Your program would then need to check that it is a valid
file, and that it can read the data for that particular version number specified in the data file.
 I am particularly irritated by my favourite drawing application CorelDRAW! that won’t read
my older files. I think it would be useful if it could. I suggest that you always make your program
capable of reading obsolete past version data files as the users will appreciate that.
 Once you have implemented the callback for the Open submenu item in the File menu and
have integrated your existing Fortran code to respond to that open command then essentially
you have completed the first major hurdle in producing a Windows version of your program.
You still do not have any form of interactive input, you can’t create a new file, you probably
haven’t implemented Save yet or Save As, and so far I haven’t discussed the issue of saving or
presenting your results.

33

2.6 That old Fortran program of yours

Without my crystal ball, it is difficult to know what your old Fortran program does and how it
does it. If the program was written for an early mainframe, then it would have assumed that the
assignment of logical unit numbers to different devices was fixed. For many computers, logical
unit number 5 was the card reader and logical unit 6 was the lineprinter. It was not always so,
and I certainly have used at least one computer where it was different. However, after a while
pretty much all computers standardised on 5 and 6. You may find that other logical unit
numbers were preconfigured in certain ways. For example, I have known computers where the
operator had a teletype and that was configured with preconfigured (or preconnected) logical
unit numbers, as indeed were the card punch and in some cases paper tape readers and
punches.
 By the time we got to late model mainframe computers that were accessed by means of a
terminal, then logical unit number 5 tended to be assigned to the keyboard on the terminal and
logical unit number 6 to the screen. These assignments were also preconfigured and you did
not need an OPEN statement of any sort to use the pre-assigned unit numbers.
 In fact, an early version mainframes running Fortran 66 there wasn’t even an OPEN statement
and that one selected things like magnetic tapes or discs and assigned logical unit numbers to
them via job control cards slipped into the card deck. Later model mainframes running Fortran
77 introduced OPEN statements.
FTN95 has preassigned logical unit numbers for the console, and it is advisable when using files
not to use single digit logical unit numbers for files. Instead, use numbers from 10 upwards.
 Where input was on cards and output was on a lineprinter, we users often had little choice
but to print everything and accept that the results of a program were encapsulated in the
printouts. Once it was possible to save results in a file there was always an issue with what you
called it and whether or not you overwrote some results that you had saved earlier by using the
same file name. The introduction of personal computers continued this little puzzle. Moreover,
after certain time had passed, it was possible that one forgot which input data matched which
output file. Of course, good practice would always have been to have printed the input data
again in the output file. One way round the problem was to have an output file that had the same
basic name as the input file but using a different file extension. An example of this would be to
have the horrid file extension .DAT on the input file and say .RES on the output or results file.
 If you adopt the procedure of having an output file that has the same name as the input file
but simply a different file extension, then that is something that you can do at the time of
opening the input file. The way to do it is to trim off the file extension and replace it with the
output file extension. I suggest not using .DAT or .RES because they are so commonplace.
 Another possibility presents itself and that is to add the results of an analysis with your
program back on top of the input data file, in other words to APPEND the results. That solves the
problem of linking the input and output, and for a Windows program has an additional benefit.
If you have the input data and the output data in the same file, then if you reopen that file in
your application you can read the results as well and avoid re-analysing the problem, but simply
go on to look at various ways of presenting the results and interpreting them. I’m thinking in
terms of an engineering analysis here, but for obvious reasons, when you save a word processor
file you save all the work that you did on it. The separation of input and output skews that truth.
 It’s not my business to tell you how to code or run your program, but a little bit of thought at
this stage they make your Windows application rather better than simply bolting on a graphical
user interface (GUI). I therefore think that it is better to reserve Save and Save As to another
Chapter. As for New, well that leads you into the area of interactive input, which is also deferred
for the time being. What I think comes next is to set the Windows program aside for the time

34

being, and work on making sure that your old Fortran program works as it did when it was a
standalone ‘console’ application.
 If you don’t have that old Fortran program, then you will probably want to skip the next
couple of chapters, in which I discuss some of the issues that you may encounter. My
assumption is that you want to (a) get your old Fortran program to work, (b) to tidy it up a bit,
but not (c) to rewrite it completely in modern syntax – although that is up to you.

2.7 Source code organisation

At some point in your program development you will probably become aware of just how
complicated the Windows interface is. I have two recommendations about how you organise
your workflow. Firstly, I think that it is highly beneficial to recognise that you will have a vast
number of subprograms. For me, that makes it imperative to have multiple source code files
and also to group the subprograms logically within those files. I find it particularly useful to
group the subprograms in a way that reflects the menu structure of the application, so that for
example, the source code for all the callbacks to the File menu are grouped in one of those
source code files, and all the callbacks for Edit are in another.
 Taking the File menu item and its sub menus to which they call, there has to be a callback for
each, then with New, Open, Save, Save As, Print and Exit there will be at least 5 subprograms
(Exit using a standard callback). Any additions will increase that number, for example a way of
getting at recently accessed files, more than one print option, and so on.
 If we suppose that the application ends up with 10 top-level menus, each of which typically
has 6 to 8 submenu items we could end up with 60 to 80 callback subprograms. Now far be it
from me to tell you how to manage your own files, but I would certainly struggle with source
code files with that number of subprograms. If you use the Plato integrated development
environment you will discover that it has the concept of a project consisting of multiple source
code files. I think that you will discover for yourself that the management of those files insofar
as it relates to compilation and linking is done particularly well. However, Plato does not
straitjacket you into the way in which you distribute your subprograms across the different
source code files – that is up to you to manage.
 Because I store my subprograms on the basis of the top-level menu item that they refer to,
then I also tend to name them after the program and the menu item so that for a program called
SURVEY, the source code files would be named:

• SURVEY_MAIN.FOR

• SURVEY_FILES.FOR (which contains the code for opening, reading and saving

data)

• SURVEY_EDIT.FOR (for inputting and/or changing the input data)

• ...

• SURVEY_ANALYSIS.FOR (which may contain most of that old code)

• SURVEY_HELP.FOR

• SURVEY_REPORTS.FOR (which is where a lot of the output is)

• SURVEY_GRAPHICS.FOR

and so on.
 The second matter is that a master program window may well run to hundreds of those
format codes, and if you follow my advice to then you will use as few format codes in any WINIO@
statement as you possibly can so that the calls to that particular function have format strings
that are comprehensible and also more easily modified, then you will discover that you have
possibly hundreds of statements. I have said this before, and no doubt I will keep on saying it,
but too much content in one WINIO@ simply leads to confusion. Remember, the content consists

35

of the format codes, associated variables and callback functions, and the sequence of the
variables and callback functions depends on the sequence of format codes. But, equally, too
many WINIO@ calls in your main program makes that difficult to follow. Similarly, too many
routines in any one source code file makes it difficult to find things.
 My suggestion therefore is that instead of putting everything in one routine (which may of
course be the main program segment), you spread out the WINIO@ calls and their related
statements across a number of subprograms, grouping them again by function. The very big
subprograms will be those where the menu system is defined in the first place and also the
definition of the items in a toolbar or toolbars. Some of the functions of a master window can
be defined quite simply, and therefore those functions can more logically be put in the same
subprogram.
 I find it very useful to have a subprogram that deals with each of the following groups:

• the caption, any status bar, start-up and close down facilities, and window styles
• the menu bar
• a horizontal toolbar
• a vertical toolbar
• the client area, especially any graphics associated with it

The division of the master window definition into subroutines brings with it the possibility of
a set of problems that I will discuss in more detail later. Therefore, in the early stages of
development of your program I suggest that you begin to create your source code file
arrangements but for the time being run with only a single master window generation routine
which can conveniently in the early stages of program development be the PROGRAM segment.

2.8 Another way to select the file to open

You will always need a callback function for a menu item, and in Section 2.4 it was explained
that the Windows file selection dialog could be invoked using the routine GET_FILTERED_FILE@.
There is another way, which is to use a standard callback ‘FILE_OPENR’ or open file for reading.
The prerequisites still have to be defined before the routine is entered, but this time with format
codes %fs and %ft.

 CHARACTER*(220) FILENAME, DATA_PATH

 IW = WINIO@ (‘%fs[DATA_PATH]&’)

 IW = WINIO@ (‘%ft[*.TXT]&’)

 IW = WINIO@ (‘%mn[File[Open]]&’, ‘FILE_OPENR[Open]’, FILENAME,

 & KB_OPEN_FILE)

You will see straightaway that this approach has similarities to the GET_FILTERED_FILE@ route,
but I think that it is less obvious what is going on. You can repeat the %fs and %ft format codes
to define the file filters. The main benefit to describing it is that there is a related FILE_OPENW,
which is useful for Save As. In any case, you still have to OPEN the file and conduct all the checks,
as well as reading it. The string that I have put in above as Open could easily be something more
relevant, for example:

 ‘FILE_OPENR[Accounts file for BusyBee program]’

36

2.9 Don’t get caught by historical artifacts

A thing that can easily catch you out is the subroutines in the FTN95 library that are a hangover
from FTN77 in pre-Windows days when it ran with a DOS-extender called DBOS. They are still
in the library. They are subroutines called OPENR and OPENRW. Don’t be misled – in the case of a
Windows application you need to get the filename in the standard Windows way, not through
those subroutines, and after that, OPEN (and INQUIRE) is the way to go. The contents of the old
FTN77 libraries still exist, and many things in there are useful. Just don’t confuse them with
ClearWin+ even though it is easy to do.

2.10 What to do with output

Please note that I haven’t said anything about output, which is especially important if your
program expects to output on the screen. For the time being, just let it do what it wants. That
way, you will still be able to check that it works the way it always did.
 I have programs that generate such voluminous outputs that in the old mainframe days there
simply wasn’t the memory to store it in. I tended to do one or two things or both with the results
as I calculated them. One was just to print them, and that was my permanent record of the
calculation. The other thing was to punch the results on paper tape, usually so that I could
further process them in a different program – usually in graphical form. Sometimes I did both,
and when I moved to a PC, I saved the information not on a paper tape, but on a disk file.
 The important thing as far as this Chapter is concerned is to be able to open a file using the
standard Windows dialog, and get your results, being confident that your program still works
as it always did in respect of producing results.

2.11 Now what about picking up those errors in an input file?

As well as the errors that crop up if you open a file that you shouldn’t have and then try to read
it, the detectable errors are primarily those that will prevent the reading process from going
any further. You will need to supplement your READ statements (if you haven’t already done so)
with END= and ERR= clauses, so instead of (for example)

 READ (50,*) A, B, C

You probably need

 READ (50,*, END=800, ERR=900) A, B, C

Where statements 800 and 900 respectively pop up a message telling the user that there is the

relevant error in the file. As to what the error is, when you reach the end of file prematurely, it

is fairly obvious, but with a reading error, it may not be so obvious. You can always add an

IOSTAT= clause, having defined an integer to contain the error number, as in:

 READ (50,* , END=800, ERR=900, IOSTAT=IERRORNO) A, B, C

But that can be less helpful than you would think, as there are well over 400 detectable errors
– with the messages not being the same from compiler to compiler, and therefore possibly not
what you are used to. In general, you might be better off defining a character string ERROR_MSG
and using IOMSG= as in:

 READ (50,* , END=800, ERR=900, IOMSG=ERROR_MSG) A, B, C

37

However, a read error is simply where the executable detects something that doesn’t fit with
what it has been told, and your dialog needs to be more helpful, for example by including the
line number where the fault occurred, or some other information such as the type of data that
was being read when the error occurred. It doesn’t matter what it was, it is probably
irrecoverable, and your reading routine needs to return control without invoking a FORTRAN
STOP.
 There is another kind of error that can crash your program, and that is some data that causes
the error to occur during execution of whatever algorithm your application uses, with a simple
example being something that should have a non-zero value being read in as zero. Those things
are difficult to detect a priori, and many old codes simply wait until a crash occurs and point it
out then. That’s not how a Windows application is expected to behave!
 Anyway, should your datafile be read without errors, then it is a question of returning control,
but only after setting the grey controls appropriately. What you might want to do is to make the
File menu prevent File/New or File/Open being invoked, but to allow File/Save As to become
active. There is no need to un-grey File/Save if the input file is not changed. All that is required
is for the grey codes to be in scope and to change the values, ClearWin+ takes care of actioning
the change.
 It is up to you whether or not your program automatically does the appropriate analysis, or
waits for you to perhaps action it via another menu command such as Run.

2.12 Buttons

If you find your way to the definitions for buttons in the FTN95 online help, you run the risk of
being overwhelmed with information. The simplest form of button is defined using the %bt
format code, but it isn’t always the best button to use because it is rather tall compared to
buttons used in many other applications. However, I recommend using it in your early
developments. The simplest buttons are set up using the %bt format code. The text on the button
is specified in the following square bracketed part of the format string, so a button might be
just:

 IA = WINIO@ (‘%bt[OK]&’)

The modifiers include:

^ the button has a callback function
` the button is the default button (i.e. the one that is selected if the user presses the Enter

key)
~ the button can be greyed out (but then it will also require an integer as a status variable)

As the button width is sized to contain its text, then you can give a button a larger size in average
character widths with a number (like 6 in the following example). In this way you can make all
buttons in a row have the same width, but beware, it doesn’t mean “6 or larger” it means “just
6” so you have to be sure that buttons are big enough to contain their text. An example of this
is:

 IA = WINIO@ (‘%6bt[Accept]&’)

As to which button is declared the default, then you must consider firstly if you want a default
button at all, and secondly what is a benign outcome of selecting it accidentally. For example, in
response to a dialog “Shall I format your hard disk?”, would you prefer to have “No” or “Yes” as

38

the default, and which would you prefer to have selected in the case of your cat walking across
your keyboard?
 Greying-out a button is a way of letting your users know that (for example) the data entry in
a dialog is incomplete, or that there is some sort of a condition that your program won’t accept.
You shouldn’t grey out the Cancel option, as users must always be allowed to change their
minds. However, when you have greyed out the Accept, OK, or “Go for it!” button, a user must
be able to work out rather easily why he or she can’t progress. This generally means that dialogs
should be simpler rather than complicated; you should suggest helpful default values for
parameters and settings, and if it is going to be difficult to work out, provide an instant “Help”
or “Why can’t I progress?” option.
 If a button does not have a callback, then selecting it causes its window to close. If there are
several buttons, then the return code from WINIO@ contains the button number that closed the
window. Buttons are numbered consecutively from 1 in the order that they are described in the
WINIO@ calls. In addition, a return code of 0 is provided if the user closes a window by means of
the close box (the square symbol with a X at the right of the caption bar). Your program can
inspect these exit return codes to decide what to do next.

2.13 %tt buttons

The “tt” name comes from their originally intended use, which is “textual toolbar”. These
buttons are rather less tall than %bt buttons, and instead of being sized horizontally to fit the
text in small increments, the size increment is a bigger step. They don’t repond to a size
qualifier, but otherwise, they function rather like %bt buttons.
 Starting with Vista, Microsoft used wider but less high buttons in standard dialogs, and %tt
matches this much better than %bt. As it happens, textual toolbars fell slightly out of fashion
after Windows 95, to be replaced by icons or icons and text. In Windows 95, a row of very
square 3D silver-grey textual toolbar buttons looked very smart, but now they look dated.
Windows XP introduced a very different style for buttons via something called the XP manifest.
For a time, ClearWin+ programs had to declare that they were using the XP manifest or they
would get the old style, but from Windows 10 the XP manifest is the default and you don’t need
the line in your RESOURCES (see later) if you don’t intend your program to run on old versions
of Windows. The subject of manifests generally is way beyond the material covered in this text
book. A further disadvantage is that once the XP manifest is in use, the %tt buttons have rounded
corners, and they don’t make such a good toolbar anyway. I always presumed that the lower
height was so as not to take up too much vertical space in the toolbar, leaving more room for
the client area.

2.14 %bb and %bn buttons

For the time being, I recommend that any action buttons that you program are done via the %bt
button format code. ClearWin+ offers some alternative ways of specifying action buttons, with
format codes %bb, %bn as well as %tt. Those other button formats may prove more to your taste,
especially in the way that they allow you to have icons as well as text on the button itself. The
problem with so much choice is that you may become overwhelmed with detail too early in the
development process and it is therefore much better to proceed with the simplest form of
button and to refine it later. Details of the other button formats and their use in toolbars are
given later in the book in chapter 10. Of course, the precise programming details are given in
the online Help files, it is just that advice on when and where to use them does not fall within
the remit of those documents.

39

2.15 Status bar

In my view, a status bar at the bottom of the master window balances its appearance and is an
aesthetic improvement. Different applications use status bars in different ways. For example,
Microsoft Word on which I am writing this, uses the status bar to tell me which page of the
document I am on, what the current word count is (although that is only a character count when
a file is loaded), that I am in focus mode (whatever that is), which page view I am using and also
a slider that allows me to zoom in or out.
 ClearWin+ has 2 ways of specifying that the master window has a status bar. One of those is
to use the format code %sb, and the other way is via an %ob… %cb structure. Personally, I think it
is premature to cover the details of a status bar at this point in the development of an
application, but it is always worth remembering that a status bar is a useful adjunct to
everything else that we do in a Windows program. I will discuss status bars in greater detail
later on in the book (in sections 18.3 and 18.4 to be precise). Status bars are nice, but not
necessarily something that you need to include at a very early stage in developing your
application.

40

3 It’s been a long road, getting from there to here ...
3

If I am allowed to speculate, it is that you probably had a Fortran application of your own
developed some time ago. It may even still be in the form of a listing, in which case you have to
type it in line by line and make sure that you have made no mistakes. If you already have a
program that works (and you have tested it with FTN95) then skip this whole Chapter. If you
are writing a program from scratch, then this Chapter is optional, but I think that it is worth
forgetting about Windows interfaces for a while, and just make sure that you have coded the
basic algorithm you wish to use starting by reading in the data from a file.
 Programs that exist as listings are sometimes found in books, in student theses, or in reports
to government bodies (usually) but to all manner of other clients. The very earliest programs
will have been written in dialects of Fortran that are very limited by today’s standards, but in
practical terms the earliest that you are likely to come across or even to have written yourself
would have been written in Fortran 66 (sometimes known as Fortran IV). The ANSI Fortran
committee produced an updated version of the standard in 1977, and this is called for obvious
reasons Fortran 77. That committee was hard at work in the 80s with the hope that they would
publish their standard in 1988, or at least in the 80s so that at least one book refers to it as
Fortran 8X – probably hoping for 88. However, they did not finish their work before 1990 so
that we have a standard for Fortran 90. Some corrections and enhancements followed in 1995
(from which FTN95 gets its name) and some in the new millennium.
 The company Silverfrost took over what had been the Salford University FTN compiler, which
had been through Fortran 77 and Fortran 90 versions, and as I write FTN95 contains some, but
not all, of the enhancements from Fortran 2003 and 2008, with more being added all the time.
 What I am confident about, however, is that you will find that the old program looks horrible,
lacks comments, and is pretty difficult to follow. You will almost certainly have your work cut
out to tidy it up. One of the first tasks that you will have to undertake is to understand what sort
of computer your Fortran program was written for, and also which version of Fortran was
employed. In the Fortran 66 era, compilers were usually targeted at a specific brand of
computer or small range of computers and therefore they implicitly assumed to something
about the architecture. It was common to find that the compiler did not implement the full range
of statement types and had some of its own tricks up its sleeve in the form of compiler
extensions.
 Fortran 77 came along at a period of great change. You can imagine that the compiler writers
do not get their new version compiler out and fully debugged in the same year as the standard
emerges but take some time. There is the additional complicating factor that about the time that
Fortran 77 compilers were coming out there was also the launch of the first modern practical
personal computer. It was the case that there was a lot in Fortran 77 that some compiler writers
chose to leave out, and that their products will what we would call ‘subset’ compilers. Indeed,
Microsoft’s first efforts were subset compilers.
 Just before the personal computer was launched there was a trend to make what were called
minicomputers. Generally speaking, minicomputers had a lot more memory than the
mainframes of only a few years before and although the first few generations of personal
computer took a while to catch up, it wasn’t long before the memory available on a personal

3 Russell Watson or Rod Stewart’s “Faith of the Heart” – the former singing the theme to Star
Trek: Enterprise.

41

computer far exceeded what had been provided on a minicomputer or mainframe only a few
years before. At the present day, most personal computers will be supplied with what was
originally thought to be unachievable amounts of memory. For example, if we measure the
memory size of a computer in bytes, the mainframe that I used in between 1973 and 1984 for
most of my work had a capacity of about 96k or 96000 bytes. A minicomputer that I used
subsequently had about 512k bytes. Even my first PC had half that, and actually more when I
bought additional RAM for it. Remember that some of that memory was taken up by the
operating system and was not available for user programs, and that the memory has to store
the program and all the variables. In those days various things were done to make up for the
smallness of the memory and one of those when they were needed, which was a technique
called overlaying, and another was to save a lot of data generated part way through a program
on magnetic tape or later (when they became available) on a magnetic disk.
 In contrast, the machine I am writing this on has a memory of some 32 GB, or 32 000
megabytes, or 32 million kilobytes. If I use one of the compiler options in FTN95, I can write
programs that use all of what is left over after the operating system has taken its chunk. To do
that I have to compile my programs in what is called 64-bit mode. If I compile them with the
alternative (and rather simpler) 32-bit mode I can carve out 2 GB to store the program and its
data or with a little bit more effort 3 GB. Even 2 GB is 4000 times more than the minicomputer!
 The upshot of all of this is that when converting an old program there probably won’t be any
chance of running out of memory. Your program will be able to have all the Windows interfacing
that you want and even it will be possible to scale up all the arrays so that you can solve much
bigger problems than ever you fantasised when you first wrote the program (or whoever wrote
it could possibly have imagined). Eventually, I have no doubt that 32-bit programs will be
dropped, and only those compiled with the 64-bit option in FTN95 will be allowed, but that
point has not been reached yet.
 Your next step is to make sure that your program works properly without a Windows
interface, because if it doesn’t, then you will struggle to debug the program code at the same
time as you are writing the interface.

3.1 Some issues about compiling the old program

There are numerous issues to do with compiling an old Fortran program with FTN95, and one
of those is getting the hang of the FTN95 system. Another one is that there have been some
changes in Fortran, although FTN95 is forgiving in that respect and will compile most things
bar a couple, which I will get on to in due course. Then finally computers have changed. The
simple fact that you are contemplating turning your program into a Windows program means
that you intended to run on a personal computer and that may well be a little bit different to
the mainframe that you probably used to develop the program on in that dim and distant past.
 If you are new to Fortran, then you will probably want to use all the latest fancy facilities in
the language and since this is not a Fortran tuition book, you will need your own Fortran
textbook. You might be able to work from the appropriate standard, but I’ve never found the
Fortran standards to be particularly readable. What’s more the latest Fortran programming
tuition books are all rather expensive. I’m sure that’s because they anticipate only tiny print
runs. My suggestion for those resurrecting an old program and possibly not anticipating
rewriting everything to accord to modern standards is to get an older book, possibly a
secondhand or ex-library book, and there isn’t much point in going too far in the modern
direction, so a book on Fortran 77 will probably give you everything that you want so for
example you might do a lot worse than to look on AbeBooks for Etter’s book: Structured Fortran
77 for Engineers and Scientists, by D. M. Etter, published in paperback in 1990 and available

42

secondhand really rather cheaply. Delores Etter (wonderful name, isn’t it?) also developed
books on Fortran 90, also available secondhand.
 It used to be the habit of compilers to include a complete manual on Fortran and it may be
that you could get hold of an obsolete compiler from somebody like Microsoft and use their
description of Fortran instead. If you do that then you have to remember that the instructions
are of course tailored to that old compiler.
 There is also a very important part of the job of rehabilitating an old program, and that is to
remind yourself of what it does and perhaps even just a pretty it up in some way. You have to
be a bit cautious doing that just in case you alter something that irrevocably ruins the code!

3.2 Things FTN95 won’t do for you (not many!)

I said that FTN95 was rather forgiving of old Fortran, and indeed it is, much more forgiving in
fact than the people on the Fortran Standards Committee who have declared a number of things
persona non grata, by describing them as obsolete, deprecated, or even deleted. Some of those
things are facilities that you may well have used and indeed, relied upon. One of the great things
about Fortran is that old stuff generally does run, and I think that the Fortran Standards
Committee’s members basically hate Fortran and want it to be something else. I have a certain
amount of sympathy with this view because I started that part of my life as a (part-time)
programmer with a language called Algol 60. I disliked Fortran for a long time because it wasn’t
Algol. When Algol just about completely disappeared, I was grateful that I’d had to switch to
Fortran!
 There are two places in the online help file where the messing around with Fortran is covered,
both under the main heading “What’s new in Fortran 95” with subheadings “Deleted features”
and “New obsolescent features”. With the exception of “branching to ENDIF”, all of the “deleted
features” are still present in FTN95, and branching to ENDIF seems to be an odd one anyway. As
far as the “New obsolescent features” is concerned, I think that “fixed form source” is to all
intents and purposes a subset of free format, except perhaps in its use of continuation markers
and some of the other features headed for the chop will presumably still function.
 It is worth checking with the list, especially if you used one or more of the things scheduled
at some point for execution, and replace them in plenty of time.
 I can’t give a positive recommendation for the use of ‘code polishing software’, although your
experience may differ to mine, but generally I find that the result is no improvement or at worst,
makes the original source code unreadable.

3.3 Things that are quite possibly rather different

One of the first issues that you will come across with a very old program is that everything is in
capital letters. A change introduced a very long time ago allows you to program in lowercase
letters, or to mix them, if you like, with something sometimes called ‘camel-case’. The name
ClearWin+ is ‘camel case’ because it has humps. However, Fortran is case-insensitive, and a
variable in the program could therefore be written in various ways, such as:

DELTA

Delta

delta

and not only that, but some other characters are possible including numerals and the rather
useful underscore character. Later versions of Fortran allowed longer names, with 6 characters
being the norm in Fortran 66, although only 5 were allowed in a subset compiler I used. If the
longer names were permitted, then names like this became permissible:

43

Delta_X

MaximumValue

and so on.
 The point is that in Fortran the case does not matter, and so the different ways of writing
variable names count as all the same.
 I tend to still program using capitals, not just from force of long habit but because I can clearly
show the difference between program code and comments by using lowercase for the latter. I
have tried it the other way round and frankly it doesn’t work so well. I also use lowercase for
any debugging code that I slip in and intend only to work temporarily. This is something that I
recognise that the compiler doesn’t, but I find it still really rather useful. Occasionally, I use a
bit of ‘camel case’ if I want to highlight a variable name. The whole point of this is to explain
why I do it in a particular way, but you have to do it your way.
 It’s also likely that your program was originally written, if not for punched cards as an input
medium, then in something that was laid out in the same way as a punched card. In the historical
development of punched cards, they were different sizes and contained different numbers of
characters and symbols. By the time they came to be used for Fortran programming, they used
80 columns or had the capacity to have up to 80 characters, and typically had rows of holes that
represented characters in a six-bit code. A six-bit code is adequate to differentiate between the
letters in a Roman alphabet, numerical digits, a small amount of punctuation and some control
codes. The six-bit coding is of course why Fortran in the early days was always programmed in
capitals.
 Incidentally, because many card punches not only punched a hole pattern but also printed
the relevant character on the top of the card it is sometimes possible even if you can no longer
read the punched cards directly into a computer, you may be able to read the Fortran
statements from the top of the cards.
 Some (typically British) computers used punched tape instead of punched cards. The tape
had a continuous line of holes for a sprocket and rows of eight holes although they still only
operated a seven-bit code because the eighth hole position was used for a parity check. If the
punch had not made the appropriate hole in one of the positions, it would be obvious because
the row of holes would have had an unacceptable number of holes - they had to be an even
number if the parity check was on even or an odd number if we were checking for odd parity.
Both systems were used. If your program is on punched paper tape, then you are even more
stuck than if it is on punched cards because you would need to find a teletype terminal that
could read that type of punched tape and that may well simply be in a museum!
 Once we got to minicomputers, which were normally terminal access, then it is quite possible
that your program was stored on a magnetic tape and that will certainly no longer be readable
unless somebody had the foresight to keep copying it - for example onto a personal computer
connected in place of the terminal - or by generating a listing.
 Another thing that has changed is that old requirement that every line in the Fortran code
had to conform to that 80-column card format. It was really shorter than 80, as the last 8
columns (or spaces) on the card had to be reserved for a sequence number. That would be
useful if the deck of cards was dropped, as I found out from experience!
 Nowadays, the lines can be as long as you like, more or less and within reason. You can still
use the old convention – I do – and I always label my code files with a .FOR extension. You can
use longer lines if you use .F or .F90, or you can define which you want by setting a compiler
option. For me, the old layout works well when I print my source code files, which I tend to do

44

on A4 paper, portrait layout. My text editor allows me to prefix each line with a line number,
and 72 characters for the statement is quite enough4, thank you.

3.4 Statement numbers everywhere …

Older code tends to have a proliferation of statement numbers, and some of the more modern
writers will tell you that statement numbers are downright awful. There are things in older
Fortran codes that lead to more statement numbers, and some user habits that make them more
intrusive. Here are some things in each of the categories.
 Firstly, at one time there simply wasn’t the logical IF construct, only the arithmetic IF. Since
with the arithmetic IF you need a statement number on the following line as well as on one or
two others, then that proliferates statement numbers. Rather interestingly, the ICL 1900 series
of mainframes allowed a statement number of 0, which means ‘the next line’, and that removed
at least one statement number, but that was a fairly unique extension to whatever standard was
in force, almost certainly Fortran 66 but with extensions.
 A programmer’s habit that makes statement numbers difficult to follow is for them not to
increase as you go through the code. I program with a ‘stride’ of 10, i.e. 10, 20, 30 and so on,
and that helps.
 Another programmers’ habit is to have a numbered FORMAT statement immediately following
the READ or WRITE statement it refers to. Really old Fortran tends to have formats on input as
well as output, and where the programmer has used a different number sequence for formats,
say 1000, 1001, 1002 and so on, it jumbles up the progression.
 I tend to put all my FORMAT statements at the end of each routine, and then their numbering
doesn’t get in the way. In fact, I often start output FORMAT statements with a 6 and put them
in the 600 plus range as a nod back towards the old convention that the lineprinter was device
No. 6! I tend not to use formatted input, but when I did, the format numbers would all start with
5 (so 600, 601, 602 etc, and 500, 501, 502 …). However, don’t be afraid to keep the formatted
READ statements and FORMATs. Fixed format READs are a real pain if you are creating an input file
in a text editor, but when files are created interactively and saved as formatted output from a
program (e.g. from Save in the File menu), then reading them, say from the File menu with Open
works just fine.
 A final habit that confuses the eye is to number continuation lines 1, 2, 3 etc. Modern Fortran
allows you to use symbols, of which ‘&’ is very convenient. If you have a load of & symbols in
column 6 in 72-column code, they don’t confuse the eye in the same way. Ultimately, if you also
put an & into column 73 of each line that is continued, you have code that works for both fixed
and free format!
 With few format numbers, advancing periodically through the code with a regular ‘stride’
they function as ‘outdents’, and in my view, don’t have the same deleterious effect that the
choice of random statement numbers, intermixed FORMAT numbers and continuation line
numbers are likely to do. It’s not that statement numbers are intrinsically bad, it’s that if they
are used in certain ways, then they are worse than just bad!

3.5 Comments and layout

In old Fortran code, comments were only available in one style: lines that began with the letter
C in column 1, and while some compilers allowed completely blank lines, most didn’t, and
what’s more, programmers eschewed blank lines because they took up valuable space in the
‘deck’ where the number of cards allowed per ‘job’ might be limited. FTN95 doesn’t mind blank

4 Actually, it is a bit restricting, and I find that now and again, I go over.

45

lines, and they only take a few bytes each. I think that it is very useful to put blank lines between
subprograms in a source code file: I always use three (fewer in the book to save space).
 Later version Fortrans also have an alternative comment indicator: the exclamation mark
instead of a C in column 1. In fact, the ! symbol can appear just about anywhere, including after
the Fortran statement, thereby making an in-line comment. Remember, the Fortran in my way
of doing things is in upper case with an inline comment in lower case, so they do stand out as
different. I use in-line comments to remind me what variables mean, what DO loops are doing,
and so on when I am reading and updating old code and working through what it does. I use
lots of inline comments nowadays.
 I also tend to divide my subprograms into blocks using blank lines. I used to use blank
comments, but complete blanks are marginally better. Then, I put a comment in immediately
after a PROGRAM, FUNCTION or SUBROUTINE heading with dashes to underline the header.

3.6 DO and CONTINUE

I never saw much wrong in terminating nested DO loops on the same statement, and even if
that statement was an executable one, such as in:

 DO 20 I=1,NI

 DO 20 J=1,NJ

 DO 20 K=1,NK

 20 A(I, J, K) = ...

Although I would concede that it looks more obvious what is really intended with

 DO 20 I=1,NI

 DO 20 J=1,NJ

 DO 20 K=1,NK

 A(I, J, K) = ...

 20 CONTINUE

Nowadays, the authorities would prefer you to write it with a lot more statement numbers, as
in

 DO 40 I = 1, NI

 DO 30 J = 1, NJ

 DO 20 K = 1, NK

 A(I, J, K) = ...

 20 CONTINUE

 30 CONTINUE

 40 CONTINUE

The extra spacing within the statements is my personal preference. Later Fortran versions
allow you to do away with the statement number altogether and to write END DO. Personally, I
prefer the outdent, but you must program the way that suits you.

 DO I = 1, NI

 DO J = 1, NJ

 DO K = 1, NK

 A(I, J, K) = ...

 END DO

 END DO

 END DO

46

Perhaps using indentation and lower case works for some people. If it works for you then use
it.

3.7 In summary ... almost

There are differences between old codes written in Fortran 66 or Fortran 77 relative to later
versions of Fortran (as exemplified by FTN95) that do need to be taken into account when you
are trying to get an old code to work in the present day. If you are trying to produce a Windows
GUI framework in which to run that old program, then you need to get that old program
working satisfactorily before you can even begin to integrate it this into any sort of user
interface, especially one as complex as Windows.
 Should you be developing something completely from scratch, then you will not need to make
so many concessions to the style of an old code, but if that is your preference then you can.
Alternatively, you are completely at liberty to write your source code in any way that suits you.
One of the boasts made by Silverfrost is that you can program Fortran in your way, and so you
can, whatever that is.
 Moreover, when you are developing from scratch you probably don’t even need to implement
any analysis until later in the development of the GUI. Having an old code means that you
possibly have to in order to conform to its data structures.
 My experience with old codes is that if you set about them with the intent to modify the
intrinsic style that the original program used then you run the risk of messing something up so
that it no longer works and then you have a big debugging problem that you caused for yourself.
A little bit of tidying up makes sense, wholesale deconstruction may well be fixing something
that wasn’t broken.

3.8 Debugging

FTN95 has pretty good compile-time diagnostics, generally as good or better than any compiler
you ever used before. It also has different compilation modes that can help you to find elusive
bugs. I tend not to use them, but if your debugging method is helped, then there are many
options available. In the online help file there is a list of compiler options, with the description
of each being more than adequate.
 FTN95 comes with a debugging option called SDBG with 32 and 64 bit options. I don’t use it,
and therefore can only give you very limited advice on using it. The place to find the best guide
is not in any files installed on your system, but by going to the Silverfrost website, then choosing
to see ‘Online Manual’. There are helpful sections there on the Debugger, and also on using the
integrated development environment Plato. Big chunks of the Online Manual simply duplicate
what is in FTN95.CHM, but the Debugger and Plato sections are better described in it than
anywhere else. The online Manual also has a good section on the Linker, if you want to run that
separately, although if you do use Plato it is integrated.
 You will have to study the documentation intently to find out about the resource compiler
(more on that later) or the Library utility. The main Documentation section on the Silverfrost
website contains useful links to what you might think are obsolete manuals for FTN77, but they
also contain helpful information on facilities that still exist in FTN95. However, you must ignore
references to DBOS, the Weitek co-processor and DBOS graphics!
 My own solution to debugging my own code is to write and then test comparatively small
sections of code at any time, and to use WRITE statements at frequent intervals to see how things
are progressing. With your ClearWin+ program, no routine actually does very much that you
can’t keep a check on by seeing how things are presented onscreen, whereas the underlying
analysis is much more complicated and does not have that immediate feedback.

47

Whichever way you do it, the analysis section has to work or your whole program is
meaningless, and that’s usually a matter for Fortran programming. If the program ever worked
at all, it must be comparatively easy to keep it working even though Fortran has evolved, the
old constructs still (mainly) work as they always did.

3.9 Character variables

For someone like me, whose first experiences with Fortran were Fortran 66 and Holleriths, the
CHARACTER variables came as a welcome surprise, although mostly I used them as more
convenient constants in FORMAT statements or as titles, read in and printed out but never
altered. CHARACTERs are a lot more versatile than that! FTN95 has both intrinsic functions, and
some custom functions available since FTN77, for manipulating CHARACTER strings.
 One thing that I do find particularly useful is concatenation, which is where you join two
strings, say STRING1 and STRING2 with the concatenation operator //, as in:

 STRING3 = STRING1//STRING2

or
 CHARACTER*(8) NAME

 NAME = ‘BusyBee’

 IA = WINIO@ (‘%ca[This is the caption for a program called’//NAME//’]’)

The strings to be joined can be variables or constants. The other functions, for which you need
to consult a book on FORTRAN and the online help, of especial use are for turning strings to
capitals or lower case, removing leading or trailing blanks, or just finding the length of the
string.

3.10 Continuations

The rules for continuation of a statement over two or more lines (or cards) have always been
simple and simply awful! The use of concatenation helps make a CHARACTER string continued
over more than one line rather more readable, especially where that CHARACTER string is the
format string in a WINIO@ function call. Here’s a rather contrived example:

 IA = WINIO@ (‘%ff%2nlEnter the value of load here’//

 & ‘%rf&’, Value_of_Load)

Remember, however, that if you are using fixed format (card format) in your program that
blanks are assumed at the end of every line, and they might matter in continuations. ClearWin+
also has its own ‘continuations’ within WINIO@ calls. One of those is the way that WINIO@
continues to build a window using ‘&’ at the end of each format string to be continued. This is a
mechanism that I suggest that you use a lot, because it makes the code less dense (even if it is a
bit longer) and therefore easier to follow. If you make an error, FTN95 tells you which
continuation the error lies in, so it is worth adding some inline comments periodically so that
you don’t have to keep counting – but do it at a relatively late stage in programming of you will
have to keep editing as you insert (or delete) WINIO@ calls.
 The other continuation scheme is how the menu bar is built up with a number of WINIO@ calls.

48

4 Graphics in the client area

Every application I have written (bar one) uses the entire client area as one big graphics pane,
or drawing surface. If I am in a hurry, then I usually make this a fixed size and with no graphical
interaction, but when I am producing something more substantial, I make it re-sizable and with
some degree of graphical interaction. In the following description, I would assume that the
graphics are not re-sizable and have no interaction. Then, I will go on to explain how both of
those facilities are implemented.
 I have an acquaintance whose idea is to keep one half of a %gr drawing surface free of any
detail so that his dialogs can pop up without obscuring any background. Finally, when his
program reaches the end of the input stage and some analysis is done, the results can be
presented in that available space. It’s a good idea, but it doesn’t conform to a normal Windows
approach, which is to put the dialog boxes up above the master window and if the master
window contains graphics, then the dialog boxes are movable so that they can be repositioned
where they obscure less detail. The way Windows works is that anything which has been
obscured is repainted after the overlying dialog is closed.
 With a small amount of coding it is possible to make dialogs remember where they were when
they were closed and the following time they are invoked to appear in the same place. How this
is done is covered below in section 6.17.

4.1 Drawing in a single %gr area

In Example_01, we put in a simple %gr graphics area, initially coloured blue (so we could see
where it was) sized 400 (H) x 300 (V) pixels. The coordinates in pixels of this area start in the
top left corner, so the x coordinates increase from left to right and the y coordinates increase
from top to bottom. This coordinate system is not one that lends itself to the imagination of
many people, although professional programmers are used to it and find it less disconcerting.
The coordinates start at (0,0) and finish at 399 and 299.
 The graphics primitives in ClearWin+ are relatively few in number, and include:

• Drawing a line, specified as a polyline or a simple 2-point line
• Drawing a filled polygon
• Draw a polyline or a Bezier curve
• Drawing a rectangle, which may be filled or not
• Drawing an ellipse, which similarly may be filled or not
• Drawing text

In addition, a single pixel may be coloured, and the line style (dotted and dashed) and line width
(in pixels) may be set. The names of the routines are self-explanatory because they all start with
the word ‘draw’, for example: DRAW_LINE_BETWEEN@, DRAW_FILLED_POLYGON@, and so on. For the
details of the routines please consult the online help file, where they are consecutive entries in
the Library reference.
 The colour used to draw any one of these primitives is set by the integer function RGB@ with
parameters in the order red, green and blue, as in:

 KOLOUR = RGB@ (NRED, NGREEN, NBLUE)

49

The parameters are INTEGERs with the value 0..255. The RGB colour model is additive, and so
black is RGB@(0, 0, 0) and white is RGB@(255, 255, 255). If all the parameters have the same
value, you get a shade of grey. The original versions of FTN95 were configured by default to use
the VGA 16-colour model with all of those 16 colours named, and the RGB colour model could
be set as an option. Some versions of FTN95 ago the default was changed. However, the old VGA
colour model persists from time to time, for example when the initial colour of the %gr area was
set to blue. (You can change back to the VGA 16-colour model using the routine
USE_APPROXIMATE_COLOURS@, but I do not recommend it).
 The simplest way to use the graphics primitives is with the use of pixel coordinates. If you
draw anything which goes outside the size of the graphics area, it is simply ignored although it
is drawn up to the boundary.
 Here is an example of the code to draw a white flag with the cross of St George on it:

 CALL DRAW_FILLED_RECTANGLE@ (100, 50, 300, 250, RGB@(255,255,255))

 CALL DRAW_FILLED_RECTANGLE@ (180, 50, 220, 250, RGB@(255,0,0))

 CALL DRAW_FILLED_RECTANGLE@ (100, 130, 300, 170, RGB@(255,0,0))

The coordinates would usually be variables rather than the constants I have used in the above.
 When you draw text, a text string may be sized and the font selected, but it is positioned
relative to the top left of the character string. You can rotate text although the effect is often not
very desirable, and works best with text that is rotated by 90° or is horizontal. You could add
text to the flag with:

 CALL DRAW_CHARACTERS@ (100, 260,’Flag of St George’, RGB@(255,255,255))

and it would be left justified. To centre it would require working out the length of the text string
using:

 CALL GET_TEXT_SIZE@ (’Flag of St George’, NPIX_X, N_PIX_Y)

where the last two parameters are the width and height of the text string in pixels. Then replace
the 100 in the DRAW_CHARACTERS@ call with 200-NPIX_X/2.
 My suggestion to you is that you include all the graphics with every variation all dealt with by
only calling a particular routine with a set of integers (or ‘flags’) as to whether things may be
drawn or not. If that makes the graphics drawing routine very long and complicated, there is no
problem whatsoever about splitting the routine into a set of subroutines, but with that single
point of contact, as it were. If you like MODULEs and CONTAINS, then you can have all your
subsidiary subprograms subordinate to a master drawing routine.
 Although the example made the graphics area initially blue, and drawing yellow on blue is a
highly effective colour combination, as is white on blue, but red on blue (or vice versa) is a really
bad combination, and black on a blue background does not show very well. You make your
program conform much better to typical Windows standards if you use a white background. A
black background makes your program look rather old-fashioned.

4.2 Scaling

Quite often, the objects that are drawn exist in the real world with coordinates in metres,
millimetres or feet and inches and some way of mapping these into the pixel coordinate system
is required. The way I do it is to interrogate windows to find out the current pixel size of the
graphics area into which I will draw my objects centred and scaled to fit. Out of the two possible
scales with respect to the X size and Y size, I then have to choose the one that enables the entire

50

object to fit. Then, knowing the real-world coordinate values for any point, I transform them to
the pixel coordinates for plotting. Those pixel coordinates are always INTEGER.

The routine proceeds as follows:
 Firstly, find the maximum and minimum of both X and Y coordinates, from which the range
of those coordinates can be determined and also where the midpoint of the object to be drawn
is located in real-world coordinates. The centre position of the graphics area is obviously at half
of the maximum coordinates in X and Y.

 IXRES = CLEARWIN_INFO@ ('GRAPHICS_WIDTH')

 IYRES = CLEARWIN_INFO@ ('GRAPHICS_DEPTH')

 N_PIXELS_IN_X = MAX (1, IXRES)

 N_PIXELS_IN_Y = MAX (1, IYRES)

 REAL_WORLD_X_RANGE = WORLD_X_MAX – WORLD_X_MIN

 REAL_WORLD_Y_RANGE = WORLD_Y_MAX – WORLD_Y_MIN

 WORLD_X_MID = (WORLD_X_MAX + WORLD_X_MIN) / 2

 WORLD_Y_MID = (WORLD_Y_MAX + WORLD_Y_MIN) / 2

 XSCALE = REAL_WORLD_X_RANGE / N_PIXELS_IN_X

 YSCALE = REAL_WORLD_Y_RANGE / N_PIXELS_IN_Y

 SCALE = MAX (XSCALE, YSCALE)

 MID_SCREEN_X = N_PIXELS_IN_X / 2

 MID_SCREEN_Y = N_PIXELS_IN_Y / 2

To position yourself on the screen with your graphics nicely centred you must transform your
real-world coordinates to pixels. I tend to do this by declaring two statement functions at the
head of every graphics routine to do the transformation. Statement functions are a bit of a curse,
but the code is included in line without you having to write it explicitly every time, and there’s
no reason if you prefer to do it that way not to have the transformation done in other functions.
I find statement functions mildly confusing and so ordinarily after I have included them, I make
some very explicit comments in my source code to the effect that the following lines are in fact
statement functions. Statement functions are in the sights of the Fortran committee as being
obsolete or worse, but that just shows in my view just how much the Fortran committee really
dislikes Fortran as it is and wishes that it was something else!

 IPOSX(XX) = MID_SCREEN_X + (XX - WORLD_X_MID)/ SCALE + 0.5

 IPOSY(YY) = MID_SCREEN_Y - (YY - WORLD_Y_MID)/ SCALE + 0.5

The addition of the 0.5 make sure that when the REAL result of the calculation is transformed to
an INTEGER, it rounds up or down to the nearest one. You could, of course, use the function NINT
(nearest integer).

4.3 Multiple %gr drawing surfaces

It is possible to have more than one %gr area in your program. It is easy to forget that you may
put one in a dialog box as well as having a big one in your parent window.
 One use of another %gr area is to show a colour that the user selects by entering the red, green
and blue values. You switch between them using the INTEGER FUNCTION
SELECT_GRAPHICS_OBJECT@. This FUNCTION takes a single parameter, which is the user ID of the
graphics area (UID). This UID is something that you choose and give to ClearWin+ when you
put %gr into a WINIO@ call:

51

 ID_SCREEN = 1

 IW = WINIO@ (‘%`gr[white]&’, 400, 300, ID_SCREEN)

You will see that the grave accent has been used to tell WINIO@ that the %gr has a UID.
Incidentally, the UID in the documentation (especially in older versions) is sometimes called a
handle, and this creates confusion with other Windows controls for which Windows generates
a handle when that control is created. The UID handle is an INTEGER that the user specifies. If
there is only a single %gr, then you don’t need to bother with giving it a UID.
 However, should you wish to produce hardcopy graphics, that drawing surface also counts as
a graphics object, and so it is a good idea to get into the habit of giving each its own, unique,
UID. Don’t give the same UID to two separate graphics drawing surfaces – which is basically
what you are doing if you produce hardcopy while the screen is displaying graphics and you
haven’t given a UID to either!

 IRET = SELECT_GRAPHICS_OBJECT@ (ID_SCREEN)

The return value, IRET in the example, will be returned as 1 if the selection has worked, or 0 if
it failed, for example by that particular Window having been closed.

4.4 The %dw graphics area

In the very first versions of ClearWin (i.e. before the + was added), onscreen drawing areas had
to be defined by the use of the %dw format code. In particular, the graphics primitives that were
provided were evolved very slightly from the graphics supplied with pre-Windows versions of
FTN77. %dw has been improved somewhat since those early days, but my advice is simple: don’t
use %dw, use %gr. In the odd situation where you are trying to read a very early ClearWin+
program that does use %dw, think of it as a foreign language version of %gr! I also don’t5 use %dw.

4.5 REAL coordinates and the GDI+

Two comparatively recent developments with the graphics system in ClearWin+ are firstly the
introduction of the ability to use the graphics primitives with REAL coordinates (which are
DOUBLE PRECISION if you use the compiler directive DREAL), and secondly, the ability to use GDI+
instead of the simple GDI.
 Using REAL coordinates somewhat simplifies the transformation from world to pixel
coordinates. In particular, the addition of 0.5, needed to actually yield the true nearest pixel, is
taken care of inside the graphics primitives.
 The names of the graphics primitives with REAL coordinates are the same as the original
names, with a ‘D’ (for DREAL or Double Precision) added before the @.
 GDI graphics can sometimes look blocky, especially where the pixels on the screen in use are
large, as in a large format but low-resolution display. The effect is best seen if horizontal and
vertical lines are drawn, and then compared to one drawn at an angle – say 45 degrees – across
the screen. In comparison, GDI+ uses antialiasing, where some extra pixels are drawn in a
colour range midway between the foreground and background colours. Various sampling
schemes can be selected. You would think that antialiasing would produce a fuzzy image, but
the eye is fooled, and a better-quality visual effect is generally achieved, with the exception of
one pixel thick lines that don’t look good.

5 In fact, I did use %dw originally. It was very primitive then, and it rather put me off the whole of ClearWin+ for
getting on for a decade! When I returned to the fray, there was %gr, thank heavens.

52

Even though the subroutines work in terms of REAL coordinates that may imply fractional
pixels, screens work in terms of INTEGER coordinates, and the resulting image will look the same
– it just makes the coordinates-to-pixels conversion easier (allegedly). I say allegedly because if
you do the conversion using statement functions, then the precise mechanics of the conversion
is hidden in the source code (but you have to remember that the Fortran committee hates
statement functions and they may be removed from a later standard).

4.6 Updating graphics

When ClearWin+ was introduced as an enhancement to FTN77 in the early 1990s, personal
computer graphics were slow, and high pixel-count screens were rare, but nowadays the
graphics systems are fast and even the most basic screen is likely to have counted as high-
resolution in the past. Therefore, although ClearWin+ has the facility to define a restricted area
in which graphics are updated, its use is optional
 The FTN95 helpfile points out that by default calling any graphics function does not result in
an instantaneous update of the screen, although on modern computers it is generally quite fast.
Instead, ClearWin+ waits until the current sequence of graphics calls from within your callback
has been completed, (i.e. until the application is idle). However, calling the routine
PERFORM_GRAPHICS_UPDATE@ will cause an immediate update. PERFORM_GRAPHICS_UPDATE@ is a
subroutine, and as it has no parameters, it updates only the current drawing surface, meaning
that if for example, there are 2 %gr areas, only the active one is updated, but of course that will
be the one where the most recent graphics operations will have been drawn.
When your application is in an idle state or a call to PERFORM_GRAPHICS_UPDATE@ is made,
changes to the graphics buffer are copied to the screen. When using %gr, ClearWin+ keeps track
of the smallest rectangle to enclose the changed areas and updates only that region, although
with modern graphics systems I have found it more convenient to update the whole lot, starting
by blanking everything out with the appropriately sized DRAW_FILLED_RECTANGLE@ in white, and
then calling the routine to redraw everything.
 On the other hand, if you use %dw, ClearWin+ cannot automatically detect the smallest
rectangle to be updated and so by default it updates the whole of the graphics region whenever
a change is made.
 If you wish to update only a small rectangular area of either a %gr or a %dw area, then you
should make a call to the subroutine SET_UPDATE_RECTANGLE@ (IX1,IY1,IX2,IY2) in order to
set the update rectangle limits (which are defined in pixels, so must be integer). Once used, this
routine must be called whenever the update rectangle changes.
 The helpfile advice is to remember to reset the limits after you have used the local update
rectangle limits, but once you go down that road you have become addicted to it, and must
remember to do it if the graphics area is resized! Alternatively, you may find that inserting
periodic calls to PERFORM_GRAPHICS_UPDATE@ so that the graphic is updated as you go along.
Personally, I prefer to draw everything and do a single update at the end, and think that the
advice in the helpfile harks back to a time of much slower computers.

4.7 Drawing text – in graphics mode

There are many issues with drawing text in Windows on any drawing surface particularly on-
screen. ClearWin+ has many routines to do with drawing text. Life is easier with monospaced
fonts, and more complicated with proportionally spaced fonts, but even so, a call to the
subroutine:

FONT_METRICS@

53

will return 20 values for different parameters relating to the font!
 An important thing to remember is that font selection and effects relate to the drawing
surface and not to dialog boxes where the font selection mechanism is completely different.
Because a proportionally spaced font has different widths for every character, and even these
ratios will vary between fonts, then to determine how much space a particular character string
will occupy you can use the routine GET_TEXT_SIZE@ which you feed with a string and it returns
the width and depth in pixels that it will occupy if drawn with the current settings. The
calculation includes any leading or trailing blanks, so the dimensions of the area occupied by
the text itself must be determined by feeding the routine with only the relevant substring.
 Text size on the drawing surface is set either by calling the subroutine SIZE_IN_PIXELS@ or
SIZE_IN_POINTS@, both requiring height and width as integer parameters. The side effect of
giving a width to a font is to possibly distort it, so be careful with that parameter. Note that
when using GDI+, attempting to set the width parameter has no effect.
 ClearWin+ does not have separate routines for writing numeric values and so these must be
converted to strings by means of a WRITE statement that uses the appropriate character variable
(LABEL) instead of a unit number, as in the following where NUMBER is the INTEGER to be turned
into characters:

 CHARACTER*(8) LABEL

 WRITE (LABEL, ‘(I8)’) NUMBER

Text is positioned on the screen relative to its top left corner. This takes a bit of getting used to,
as most people think of the critical position being the bottom left corner.
 Oh Dear! There’s a problem here. If you start by drawing text, sure, it is positioned using the
top left hand corner. But the minute you change some feature of the text, the location point
moves to the bottom left hand corner of the string, neglecting any drops.
 The basic graphics primitive DRAW_CHARACTERS@ draws characters using the current font
which on entry to graphics is a system font that works quite well for labelling even at the default
size and shape, and even then, a number of routines can affect how it is drawn, for example,
using the subroutines:

ROTATE_FONT@, SCALE_FONT@, SELECT_FONT@, UNDERLINE_FONT@, BOLD_FONT@

ROTATE_FONT@ takes one parameter, which is the anticlockwise rotation in degrees from the horizontal.

SCALE_FONT@ and SCALE_FONT1@ each take a single parameter that is integer in the first case and
real in the latter, They do what they say, scaling the font accordingly and although
SCALE_FONT1@ has finer control everything is predicated by rounding to the nearest pixel and
so the effects are only really obtained with very high DPI settings such as you get on printers
rather than on-screen.

UNDERLINE_FONT@, BOLD_FONT@, ITALIC_FONT@ all take an integer parameter that is set to 1 to
enable the effect, and when set to zero and the routine run again, the effect is cancelled.
 SELECT_FONT@ allows you to select a font based on its name. Good advice is to take a great
deal of care in this because fonts are not always available on every machine. If you specifically
require a particular font then when your application is installed it should also install that font.
By default, Windows’ system fixed font is used. Different versions of Windows use different
fonts by default in dialog boxes, and these are found by reference to Windows documentation.
If you check which version of Windows your program is running under then you have some

mk:@MSITStore:C:/Program%20Files%20(x86)/Silverfrost/FTN95/ftn95.chm::/ClearWin+/library/SELECT_FONT_.htm
mk:@MSITStore:C:/Program%20Files%20(x86)/Silverfrost/FTN95/ftn95.chm::/ClearWin+/library/SELECT_FONT_.htm

54

certainty that the appropriate font will be found on the system. These default font names for
the most recent versions of Windows are listed below.

Windows version Default proportionally spaced font
1,2, 3 Helv
3.1 to 98 second edition MS Sans Serif
2000 & XP Tahoma
Me MS Sans Serif
7 Tahoma
Vista, 8, 8.1, 10 Segoe UI

The change in default font has very small effects, but it does change the appearance of dialogs
and may result in some misalignment. A useful device is to include Segoe UI in the installation
package for you application, and stick with that, or be prepared to do an update of your software
for new Windows versions.

4.8 User selection of a font

It is possible to allow user selection of a font, its attributes, and its colour. This selection
requires the subroutine CHOOSE_FONT@ with a parameter for the colour selected by the user
from the standard Windows dialogue that allows the user to choose a font. The attributes of
italic, or underlined can be selected by the user and when that is done, the current font changes.
However, the colour selected by the user is returned as the integer value equivalent to that
which you would get from RGB@.
 If it is required to return to the original font then before calling CHOOSE_FONT@, the ID of the
font can be found with GET_FONT_ID@ and reset with a call to SELECT_FONT_ID@.
 My own Windows applications regard the choice of fonts as something that I do
programmatically, and users do not have access to this capability. However, if the application
is more about text and its display, then this is a very useful facility.

4.9 Resizing the graphics area

One of the reasons that you may wish to resize a graphics area is when the user resizes the
parent or master window of the application. First of all, consider how that is enabled. The fixed
size window from HOMER.FOR and can be made into a re-sizable window by adding the format
code %ww or %sy. The former is used with a master window, and the latter with a dialog box. You
also have to modify %gr to tell it how to handle graphic interaction. ClearWin+ offers two
possibilities in how to handle resize events. The method that I recommend and deal with here
is to handle the resize yourself
 The format code %ww has lots of possible options, but used without any of them, it puts
minimise and maximise icons on the caption bar adjacent to the close box. The window is then
also resizable.
 To make the %gr drawing surface resizable, you have to give it a pivot (Windows terminology,
sorry). You do that by preceding the %gr with the format code %pv. That means that when the
window containing the graphics object is resized, the graphics object will shrink or grow with
it. Basically, if you don’t redraw the graphics, that means that you may lose part of the graphics
on the right or bottom of the area, or you may find that some white space appears to the right
or beneath your graphic. That behaviour may well suit you, but if it doesn’t and you want to
resize the graphic when the graphic area changes size or shape, then you have to provide a
graphics callback function.

55

 IW = WINIO@ (‘%pv%`^gr[white,user_resize]&’, 400, 300, ID_SCREEN,

 & KB_GRAPHICS)

Note that in the above, the code would have gone over the 72 character limit and so I have gone
to a continuation line and done so without breaking up the callback function name. I have also
used the & that is preferred these days as a continuation marker. In free format code,
continuation is signified by having an & at the end of one line and at the beginning of the
following one, and you can make even fixed format code dual-purpose by adding an & in column
73 of the line to be continued. That may be something you feel like doing when the code is
stable!
 A typical, but minimalist, graphics callback function may look something like this:

 INTEGER FUNCTION KB_GRAPHICS()

C -------------------------------

 INCLUDE <WINDOWS.INS>

 CHARACTER*(20) REASON

 REASON = CLEARWIN_STRING@ ('CALLBACK_REASON')

 IF (REASON .EQ. ‘RESIZE’) THEN

 IXRES0 = CLEARWIN_INFO@ ('GRAPHICS_WIDTH')

 IYRES0 = CLEARWIN_INFO@ ('GRAPHICS_DEPTH')

 IXRES = MAX (1, IXRES0)

 IYRES = MAX (1, IYRES0)

 CALL PLOT_ROUTINE (IXRES, IYRES)

 KB_GRAPHICS = 2

 RETURN

 ENDIF

 END

CLEARWIN_STRING@ is a CHARACTER FUNCTION which returns a text message that gives the reason
why the callback was invoked, in the case of a resize, it is ‘RESIZE’ (surprise, surprise!).
Immediately, we must find the current size of the graphics area, check that no dimension is zero
(which would throw the scaling), and then rescale and replot, which I have suggested here is
done in the SUBROUTINE PLOT_ROUTINE. Sometimes I find it better to put the scaling in a separate
routine from the plotting, and to pass appropriate sizes and scale factors via COMMON. The choice,
really, as always, is yours.
 I put the RETURN inside the loop for a good reason: it could have been omitted there, and then
under modern Fortran rules would not have been required at all. However, a graphics callback
function will also need to handle various mouse clicks and actions where the user interacts with
the graphics area and in that case, I find it very desirable to complete the actions as quickly as
possible and to exit the graphics callback function without needing to trawl through a lot of
other possible actions that have already been shown not to apply.

4.10 OpenGL

ClearWin+ can open a drawing surface for you to produce OpenGL graphics. The format code is
%og. OpenGL graphics can be rather beautiful but programming that system can be a trial.
Besides which, OpenGL is not ClearWin+, so programming it is something you should learn
elsewhere. Possibly online. For most purposes, GDI is fine, and GDI+ is even better - sometimes.
The problem with both GDI+ and OpenGL is that single-pixel wide lines look rather ‘weedy’
because of the anti-aliasing or smoothing algorithm. Many of us will find that GDI is good

56

enough. I certainly do. I recommend learning how to use (or implementing) the fancy graphics
systems to a later date.

4.11 Do you know what you want to draw?

A great milestone is to be able to read one of those old-fashioned datafiles, run your program
and get the results, then draw something that shows those results in the appropriate context.
 I once had a program that did my analysis using data on punched cards on one mainframe
computer, with its results transferred via paper tape to a different mainframe computer that
could provide graphics output. A second program not only read the paper tape, but also had its
own data file containing instructions on what to do with the information on the paper tape. Part
of the reason was that computer A (an ICL 1900 series machine) would run the analysis, but
computer B (an Elliot/NCR 4120) had a hardcopy graphics plotter while computer A didn’t
Sadly, computer B wouldn’t run the analysis program because the program took up too much
memory – computer A stored the executable in a different way. The whole procedure took a
couple of days, because cards and tapes had to be couriered across not just building to building
but also across the town of Kingston upon Thames. It is all doable on a single PC nowadays, and
not only that, the run time is negligible. What is more, the analysis and the graphics output can
all be implemented in a single program. It therefore makes sense to do the following.

1. Read in the data from a prepared datafile (no longer on cards!)
2. Do the analysis
3. Plot something that shows that the analysis completed successfully
4. Let the user (me!) choose from a menu what I want plotted
5. Clear the screen, and plot what was asked for

Steps 4 and 5 can be repeated as often as I like. The way to do the above procedure is to have a
graphics subprogram (or set of subprograms) that in principle can draw everything, along with
a set of switches so that most options are initially turned off. An example screen grab from such
a program is given below in Figure 4.1, where before doing the screen grab, I moved the dialog
from centre screen to near the menu bar. The Options menu launches this dialog, and the Plot
menu command makes a hard copy.

Figure 4.1 A dialog with plotting options. The blue comes from the Windows background in a screen
grab.

57

To program such a dialog yourself, you need to master the following ClearWin+ facilities:

a. The tick boxes (called check boxes in the documentation, and accessed via the %rb format
code

b. The outlined boxes that are called up by means of a pair of format codes %ob and %cb
(open and close box)

c. Some data input boxes for both real and integer values (%rd and %rf)
d. A variant of an integer input box with a ‘spin wheel’ (the up and down arrows, which is

also limited to the values from 1 to 10 in my example. The additional format codes are
%dd and %il.

We will get to all of these in due course, but there’s nothing to stop you looking them up in the
online help file even now.
 Another way of doing it is to have the plot options somewhere in the input file, but then if you
want to change them you still need the appropriate dialog(s) – or change the input file and run
the program again, which is rather old-fashioned, and certainly not user friendly.

4.12 Your exercise

Assuming that you got your program to draw something in a fixed size %gr drawing surface, the
exercise recommended at this stage is to make the main program window resizable, give the
drawing surface a pivot and a graphics callback function. Once you have done that, you can
countenance adding a dialog to allow the user control over what is plotted. Hardcopy we need
to leave until Chapters 11 and 12.
 It’s probably about time to revisit the File menu, and make that old-fashioned externally-
prepared datafile user selectable from a list in standard Windows fashion. This may mean
having a look back at Chapter 2.
 Once you have completed the drawing part, we move on to saving your files with any changes
– something that you need to master before you think about implementing mechanisms to make
those changes.

58

5 Going back to the File menu

In Chapter 2, I left the File menu details hanging, having only dealt with Open. So what about
Save and Save As ? What about New and Print? These are the first things that I am going to deal
with in this chapter. Should you wish to follow my suggestion that you divide your source code
between a number of files, each based on top-level menu items, then if you haven’t already done
so it is a good time to start.
 Remember, that every menu item at the lowest level will require its own callback function.
Top-level or higher-level menu items that lead to further sub-menus do not get their own
callback function for the obvious reason that when selected they do not do anything other than
show the next level down in the menu structure.
 As pointed out several chapters ago, there are at least six items in a Windows file menu, and
once you go down the route of building the structure of that particular menu in order to run a
test you must have at the very least dummy callback functions in your source code so that when
the program is compiled and linked there are no missing references. My advice is to quite
definitely advance slowly and try not to write too much code before you can test it. That
simplifies debugging.

5.1 Start with Save in the File menu

My suggestion is that for the time being you leave the callbacks for New and Print as dummy
routines that do nothing except return the value of 2. New requires you to write a number of
dialogs involved in the creation of a new dataset, and Print requires consideration of what you
actually want to produce in the way of hardcopy. These issues will be dealt with later in the
book.
 The option Save in the File menu is intended to allow you to save changes that you have made
to your data set into the file that it originally came from. In the simplest way possible, all you
need to do is to keep the file open, perform a REWIND operation on it, and write the dataset in its
entirety back into the file. If you do that, then you do not need to bother about a new OPEN
statement, but at some point you do need to concern yourself with whether or not the file is
read-only.
 The other problem that will come up and bite you is that if the data originally came from a
removable drive, and the user has removed the media, then your program will crash. If you read
it from somewhere that was write-protected, then your program will crash. Since part of the
Windows paradigm is that the program should never crash, it’s the reason why I originally
suggested that after reading your data off the file you use a CLOSE statement. It does mean that
you will have to go through the rigmarole of reopening the file, and part of that is checking that
the file is still available, and that it is (in this case) writable. The Fortran OPEN statement does
have various things in it that will allow you to field certain errors but there are better ways of
checking that the file is still available, and if it is not, allowing you to do something about it.
 Right from the time of FTN77, the compiler writers provided some SUBROUTINEs and
FUNCTIONs to do various things that weren’t in the Fortran standard. If I am allowed a small rant
at this time, then I will say that the originators of FTN77 had discovered that the biggest
problem with Fortran 77 was that it had no graphics and no way of generating a reasonable
user interface, as the various things like READ, WRITE and PRINT were fairly hopeless. Even the

59

current Fortran standard has not provided either of those two rather essential facilities, which
is why FTN95 is so brilliant.
 A function that has been present in FTN since those early times is the LOGICAL FUNCTION
FEXISTS@ , which allows you to check that a file exists. I would recommend using this function
before you respond to a Save request. it isn’t just a matter of checking that the file exists before
opening it, it’s a question of finding out whether the user really did mean to save over the top
of the existing data set. You need to give the function your file name and its complete path and
it will return the value .TRUE.- if the file exists - and .FALSE. for a variety of reasons including
that you set a wildcard and more than one file matched it or if any other kind of error occurred.
Do be aware that there is possibly an obsolete version of this function with the more rational
name FILE_EXISTS@. However, even if a file actually exists that is no guarantee that you can
write to it, as it might be in a read-only folder or even the file itself might be read-only. In that
case you need to use the standard Fortran intrinsic INQUIRE, documented in full in the online
help file.
 An anecdote about why this is important is that I once wrote a program for student use on
field courses when the computers were not attached to the University network. In their
wisdom, the IT technicians had made all the computers check periodically whether or not they
were connected to the University network, which they obviously could not be where there were
some distance away from the University and being used on a field course. If the computers
found that they were not connected in the appropriate way they would shut down, which was
hard lines on the student using the computer wondering what the heck happened. Incidentally,
the check was whether or not they were connected to a segment of the University network
where none of the students ever went! It resulted in a sort of shouting match, as a result of
which the IT section re-imaged all the machines. Whether or not it was done deliberately, we’ll
never know, but the default saving location for student files was write-protected. That would
have been fine if everybody knew that was the case because instead of using the saving function
they should have used Save As and saved their work to a removable USB drive. However, it
caused a second lot of mayhem (and a continuation of the shouting match)!
 It is possible to determine whether a file is write-protected by using another of the FTN95
special routines, this time one called FILES@, which returns a whole lot of information including
the date and time the file was created and various other pieces of information. If you find that
a file is write-protected, then that probably means that the original creator does not intend it
to be overwritten and you should then give the current user the opportunity to save the file
with a different name or in a different place, or, you need to reset the file attributes with the
routine SET_FILE_ATTRIBUTE@. I will leave you to explore these particular facilities which you
will find in the help file for FTN95.
 The point is that you do need to make sure that the file exists, and can be overwritten, and if
not, then do something about it in the way of letting the user make sensible choices from there
on.
 Save does not need your program to use the standard Windows file selection dialog, unless
something has gone wrong, and the user has chosen to save the file to another location, but that
is Save As.

5.2 Save As in the File menu

If the user has selected Save As this generally means that it is wished to save the current dataset
to a different filename and therefore one of the first steps must be to launch the standard
Windows file selection dialog, but this time with the file parameter set to 0, because it does not
matter whether the file exists or not and the dialog is equally at home with the specification of

60

a completely new filename. If the user has selected an existing file name, then it is very sensible
to ask them whether they are content for the original file contents to be overwritten.
 It should be fairly obvious that what is actually written to a data file or ’document’ is the same
regardless of whether Save or Save As was initially invoked, and the WRITE statements can
therefore go into a subprogram that is called from either of the callback functions.
 There is one very obvious drawback to using the standard Windows file selection dialog, and
that is because the acceptance button is labelled Open, whereas you might wish it to be labelled
Save. In that case you should use the standard callback ‘FILE_OPENW’ as this labels the
acceptance button appropriately. It is still necessary to do the checks as to whether the file is
writable, and then to connect it to a Fortran unit number via an OPEN statement.

5.3 Data file formats

The traditional approach to writing a data file is to prepare it with a text editor that emulates
the former use of a card punch or tape punch, so that the numeric values are laid out as plain
text. Whether or not the data set is read using formatted input or unformatted, plaintext is
always used when the user creates a data file. The problem with a user-prepared plaintext data
file is that the user can make mistakes and if one of those is encountered when the file is read,
then without the necessary END= and ERR= lines in every READ statement, any error will
terminate the program with a Fortran error message and that is not the way that Windows
programs are expected to operate. Even when a data file is created by a program, should it be
in plaintext then the user may edit it and thus introduce errors.
 To make your Windows program stable, then the use of END= and ERR= is essential when
reading a plaintext data file. Moreover, the format statements must provide fields that are long
enough to contain the largest conceivable number to the requisite degree of precision and
should always ensure that there is an appropriate separator between the data items.
 Rather than to give further advice I think it is probably better that I give an example where I
got it wrong. For a student survey, I was saving coordinates in a file. These coordinates were in
metres and had three decimal places. For over 30 years, student field courses had used a local
coordinate system for their surveys where the maximum coordinates were measured in
thousands of metres. All coordinates were positive and to allow 4 digits before the decimal
point and three after, a format of F8.3 would have been perfectly adequate. But, in order to
provide a substantial separator, I had used F12.3. One of my colleagues then made the unilateral
decision to use UK National Grid coordinates which as well as metres involved hundreds of
kilometres and therefore also filled the format completely, removing the separator, so that files
could not be reread unless they were edited by hand. The lesson to learn from this is to
anticipate such things and program accordingly.
 The problem of the survey coordinates would have been resolved had the program saved its
data in an unformatted file, and unformatted files have the advantage that they will not be
edited by a user who does not possess some fairly detailed knowledge and skills. The downside
of using unformatted files for saving data is precisely the difficulty of reading them outside the
application that created them all without the knowledge of how they are structured.
 My recommendation is to stick with plaintext Fortran formatted files while you are
developing your application and only consider changing things if you really don’t want any
easier editing of those files later. Even then, you may still want plain text, and if you use it, please
make sure that the data fields are adequately separated. This means explicitly providing
separators in the FORMATs, and not just relying on the format being larger than the anticipated
value.

61

5.4 Making a backup copy

The menu command Save is intended to overwrite the original dataset. Some programs,
including my favourite, CorelDRAW!, take one level of backup when a file is saved. After several
saves, the original dataset is long gone. An accounting program that I use takes 10 levels of back
up, which is rather better at not losing your work. How you implement backups is up to you and
I just raise it here because it can be an issue.
 If you consider each change your program will eventually do to the dataset as a transaction,
then an alternative approach is to automatically save your work after each transaction. It may
be wise to save a copy of any original data file that you opened, but if you have saved as you
progressed, then the standard callbacks to File/Exit will be perfectly satisfactory.

5.5 Changing the grey codes

There is a certain logic to keeping Save and Save As disabled until after a data file (or
‘document’) has been opened, read successfully, and checked for errors and inconsistencies. At
that point, Save As might be enabled because the combination of Open followed by Save As is a
way of making a copy of the original dataset within your program. However, it is only logical to
enable Save if there have been changes to the dataset. Moreover, once a dataset has been saved,
it is sensible to disable the menu command Save until other changes have been made. Save As
logically should stay enabled.
 Similarly, once an Open menu command has been successfully executed, it is sensible to
disable both Open and New.
 The above suggestions work if it is intended that the user should only be able to work on one
dataset at a time and should then exit the program once they have finished with that dataset.
That is not the way that Windows programs normally operate. Windows programs usually have
options to permit the user to work on multiple datasets or documents. What I have described
previously is a very clear example of a single document interface (SDI). A program that operates
under the SDI paradigm can be made to deal with multiple documents simultaneously by simply
launching a second copy of the program, which will be complete with its own toolbars and
menus and will function completely stand-alone. Naturally, a Windows conversion of a pre-
existing older Fortran program is likely not to have very great memory demands and multiple
copies can be launched without stressing the total availability of RAM. It may be possible to
launch second and subsequent copies of any program (and that includes itself) from a menu
using the START_PPROCESS@ facility described in section 1.4 in the context of Help, or the user
may start those extra copies from the desktop. Conversely, there are ways for a program that
uses a very great deal of available RAM to inhibit starting of a second copy of itself. This requires
Windows messaging which I discuss later in the book in Chapter 27.
 The explicit multiple document interface (MDI) approach usually contains the different
activities on each of the multiple documents in child windows contained within a frame defined
in the master window. Personally, I find that MDI program development is much more difficult
than the SDI case, and prefer the ‘multiple invocations of the same application’ route. The
business of frames and child windows is rather complicated, and I feel that certainly you will
not want to be involved with that degree of complexity until you are adept with ClearWin+.
 In order to see the look and feel of SDI when you have multiple instances of a program, you
need look no further than Microsoft Word, when each time you select a new document, you
generate another instance of the program. In contrast, Microsoft Excel gives you the choice of
running a second instance of itself or of putting a second sheet into your main document.
 The choice of how to handle multiple documents is rather fundamental to how you manage
the File menu, especially in respect of enabling or disabling the options. Indeed, the current

62

versions of Microsoft Office applications do not respond directly to the File menu but in fact
launch a completely different window with rather more options than are traditional in the
Windows paradigm.
 I have found it helpful to also add a Close option to the File menu in an SDI program, with the
option disabled initially, and only enabled after a successful Save or Save As, and being disabled
again if your user changes their dataset. Alternatively, once Close has been enabled, you may
prefer to keep it enabled but if the user has changed their dataset to pop up a window that asks
them if they are sure that is what they wish to do, i.e. to close that particular run without saving
a file. Once Close has been operated, New and Open are enabled, and Save and Save As need to
be disabled. Other possibilities are to keep New and Open available at all times, but to give the
user the opportunity to save current datasets first.
 Part of the reason why I suggested doing all of the initialisation for your program in a
subroutine (see Section 17.1) is that it makes it easy to reinitialise everything when a new
dataset is contemplated simply by calling the subroutine. At the risk of duplicating what is said
later, BLOCK DATA isn’t a good idea, and a subroutine containing all the initialisation statements
can be called repeatedly. My subroutines that do the initialisation are called BLOCK_DATA for
historical reasons!

5.6 What do you really want to save?

My programs work generally with the idea that I have an input dataset that I run through a
program to generate some results, or output(s). That means I have a file (or document) that
contains the input dataset, and so Save or Save As generally imply saving that input dataset and
changes I or another user have made to it. Inevitably, that means my output(s) have to be read
off the screen, printed out, or saved to a different file. I imagine that my standard approach is
therefore similar to many other engineers in particular, but also scientists, and indeed, in my
early years as an academic when processing exam results each year was done on a department-
by-department basis and not for the whole University, the tabulating and listing program ran
the same way. If the results were saved in a file system, it created a naming issue, partly, but
not wholly, solved by having input and output files with the same root name but just a different
extension. There is a big advantage to having the same root name and different extensions in
that you have to give only that root, and the application can append the appropriate file name
extensions. I suppose that it has a certain inevitability that input file names were often given
the extension .DAT and results files .RES, and because the lack of imagination is endemic,
eventually a whole mess of DATs and RESs files from different applications clog up the users’
systems.
 There are, of course, different paradigms, and one of those that most Windows users will be
familiar with is the document being not just the user inputs, but how the application has dealt
with them. Examples abound, but to cite just 2, we have Microsoft Word and CorelDRAW! In the
former, the document is a file that is formatted, and when it is saved it no longer contains just
the user’s keystrokes, but how they have been formatted, perhaps into sentences and
paragraphs, different fonts and so on. Similarly, in the latter, the document is the drawing.
There’s a chance that your application conforms to that paradigm, and not my input and output
separated into different files.
 There is, of course, at least a third way, and that is simply to append the results (using my
approach) to the end of the input file. It is a simple matter to write the inputs again before the
results, and to prefix the whole lot with some form of header that says ‘This file contains data
and results’. Even in 32-bit Windows the available file sizes will allow just about any length of
information the average Fortran programmer is likely to save. A disadvantage of the approach
is the risk of overwriting something you wanted to keep, and of course that means being careful

63

about letting the user do it too easily, using pop up ‘Are you sure?’ messages in a way that you
simply wouldn’t need to in, say, Word. It also means that you have to equip your application
with the facilities to read the results portion of the file: not always necessary, but handy if the
processing takes a long time, and by reading a file with the results pre-computed it can save a
long wait.
 As always, the choice of what you do is yours, and yours alone (unless you work in a team,
when it is a joint decision) and nothing to do with any preferences I might have. However,
saving the recomputation time is only really useful if that implies a significant wait, and many
applications that I know used to run overnight now run surprisingly quickly.

5.7 Keep the user informed

A pet hate of mine is the fact that output to a file is asynchronous, and a program can stop before
the file is written. The way to enforce some order in this is to actually close the file when you
have finished writing it using a CLOSE statement. Then, if the program is still running in
Windows mode, pop up a message to tell the user that the file has been properly saved. If you
think that it will annoy the user, then add a tick box labelled ‘Do not show this again’, and act
on the user’s preference.
 Print files which go to the Spooler part of Windows need to be labelled so that the user can
see if his job is in the queue, and that is done with a call to the subroutine
SET_CLEARWIN_STRING@ with the appropriate parameters (see Section 12.1, or the online help
file). There isn’t the equivalent for file saving, even though files go through the disk cache, but
they do so at a much faster rate than through the printer queue.

5.8 The most recently used (MRU) files list and dynamic menus

In the early days (or should that be years, or perhaps even decades) of Windows, it was a habit
of Windows applications to append a list of most recently used files to the File menu. Sometimes
it was a little as the 4 most recently opened files, or sometimes more. When files were limited
to that 8.3 format (up to 8 characters in the name, and up to 3 in the extension), typically
subdirectories were only nested 1 or 2 levels deep, and users kept so few files that their names
tended to be unique despite their brevity, the MRU list fitted naturally into the bottom of the
File menu. ClearWin+ can do it that way if you like, using a facility called dynamic menus. The
principle is to use a special form of the %mn format string that returns a handle to the relevant
part of the menu, and with the aid of that handle and the subroutines ADD_MENU_ITEM@ and
REMOVE_MENU_ITEM@ it is possible to add or to remove submenu items. Doing so creates
complexities because the callback function must pick which dynamically added entry has been
invoked via the use of a function CLEARWIN_STRING@(‘CURRENT_MENU_ITEM’).
 There are several reasons why I do not advocate this route. One reason is aesthetic, and that
is because file names may be very long, particularly if a path (or even a truncated form of path)
is given. The second reason is that although users may be familiar with having the MRU files list
in the Files menu, dynamic menus are not generally a good idea. For example, it is quite possible
to construct all menus dynamically so that there are never ‘greyed-out’ items. Microsoft says
that following that approach you confuse users, and it is better that menus always present the
same general appearance, with greying-out there to point out that selections are unavailable.
The alternative is that users may wonder how to get to the selections they want, and hunt
fruitlessly through menu after menu, getting more frustrated every time.
 So if we don’t use the dynamic menu route, how do we use the MRU list? The answer is to do
something that is still fairly obvious, but where the MRU list is presented in a dialog. One option
may be to have submenus to File/Open, such as Recent file (which brings up a dialog) and Search

64

(which brings up the standard file selection dialog). Alternatively, a completely new command
in the Files menu – say Recent files or Open Recent might be provided. CorelDRAW! presents its
MRU list in multiple ways, one of them being as part of the initial ‘splash’, and that is also an
option for you.
 If the MRU files list is part of the initial splash screen, then it mustn’t fade away. It also needs
careful design with not too much space devoted to logos etc. All of the file names when clicked
should essentially launch OPEN, and as some of those files may not be available (through being
on removable media that has, in fact, been removed), their status regarding availability must
be checked before offering the file as a selection. INQUIRE is helpful here, or FEXISTS@ (see
section 5.1) and I recommend keeping the file in the list even if it isn’t available, but marking it
in some way equivalent to ‘greying-out’.
 You will probably find that putting an action button next to the filename is easier to program
than making the name itself clickable, which probably requires a Listview with only one column
(see Chapter 14). Alternatively, each file can be associated with a set of ganged radio buttons.
 In general, you will find it best to leave the whole business of the MRU list to a late stage in
program development.

65

6 Entering and editing data

If your original old program expected to read its input dataset from a file, you probably
rationalised that behaviour on several grounds instead of having some sort of interactive input.
Perhaps you thought the effort of writing the interactive input routine was too hard or would
take too much of your valuable time. Perhaps you had already used up the available RAM in
your computer. Or maybe you had given it some thought and had decided that the very many
man-days of work that some programming team had already put into a text editor would
require you to duplicate that effort when you set about putting some sort of an interactive front-
end on your program. It is definitely true that it is difficult to devote the time and resources to
generating very effective user interfaces in respect of input data.
 To be frank, it may not even be worth all the effort if you are programming for yourself and
are quite happy generating input files in a text editor. It is sometimes even easier to generate
the input files in Excel, and then save them either as comma-separated files or by cutting and
pasting the tables into your text editor. If your program is no more sophisticated than using the
File menu and the standard Windows file selection dialog to find and open your data file instead
of going through the File Explorer and using a command window (or DOS box) from which to
run your program, then it may well even save you little time.
 I have several programs like that. Their original versions used the whole capacity of a
respective mainframe, and they lacked graphics to present their results because simply there
was no graphics output device. I used to generate punched tapes of results and take them to a
different computer in another building about a mile away from the first where there was a
primitive pen plotter, and there I could run a different program to generate graphical output. I
did that for decades. Sometimes, I still run the logical successors to those programs by still using
a text editor to create an input file, but instead of punching a paper tape, I originally saved the
intermediate data on removable media. When I got bigger, better and faster computers with
more capacity, I saved the intermediate results on a hard disk. Finally, I integrated the relevant
parts of the graphics plotting program with the analysis program using ClearWin+. For
something I might not run for years on end, that is a quite satisfactory solution, and one that I
suggest may even meet some of your needs.
 However, you have not come to this book to stop at such a primitive stage: you very obviously
want the complete graphical user interface for your program that includes interactive input.
Some of the ideas about interactive input are presented in the rest of this chapter, where they
take the form of dialog boxes (or windows) that contain fields in which you can enter INTEGER,
REAL or CHARACTER data, you can set options, and choose things from drop-down lists, to
introduce only some of the ways that your program can request and accept its inputs.

6.1 Dialog windows with data entry

One of the reasons that I suggested that you develop your program with File/Open as your first
major step to implementing the menu system was that once you have a full dataset, then you
can set about altering it with different values very easily. Let’s imagine that you have several
types of data in your datafile. Imagine that your data input represented a network object that
was made up of points or nodes that have an identifying number and x,y coordinates. Suppose
that there are NP of these, and that the list has no missing entries, so that it runs with numbers
from 1 to NP. Similarly, there are NL links, each of which also has a number running from 1 to

66

NL, and a link is defined by the node numbers at each end. You could imagine that the dataset
could be stored in a file that comprises one line that gives NP and NL, then NP lines for the nodes,
and NL lines defining the links.
 Once you had read the data in from your datafile, you could actually draw this network,
finding the range of each coordinate, scaling and then fitting to the screen. For the time being,
forget about refinements like the links having different properties, so needing to be drawn in
different colours or line thicknesses, or even numbering the nodes and links.
 Now suppose that you wanted to change one of the coordinates. What you would have to do
is to open a dialog box that allowed you to pick the number of that particular node and edit its
values. If you accepted the change, then you could redraw the network showing the change. For
simplicity, let us suppose that we keep the coordinates and linkages as a set of arrays in
something like the following:

 COMMON /NETWORK/ NP, NL, X(50), Y(50), LINKS(50,2)

As defined, there would be a maximum of 50 nodes and 50 linkages, taking up 1200 bytes, or
basically, next to nothing. You could have a dialog box that allowed you to change either of NP
or NL or both, but that would lead you into the additional problem of specifying the extra node
coordinates or linkages. As a first step, add two menu items into your Edit menu, perhaps
labelled Nodes and Links and prepare two dummy callback routines. Starting with the one for
the links, the information that a user would have to put into the dialog consists of the link
number, and the node numbers at each end. All of these values are integers, and ClearWin has
a special data entry box for integers, generated with the format code %rd. For simplicity,
imagine first a dialog that asks the user for a link number. Our first efforts at a dialog box might
look something like this:

 INTEGER FUNCTION KB_EDIT_LINKS()

C --------------------------------

 COMMON /NETWORK/ NP, NL, X(50), Y(50), LINKS(50,2)

 INCLUDE <WINDOWS.INS>

 N = 1

 IL = WINIO@ (‘%ca[Edit Links]&’)

 IL = WINIO@ (‘Link No.%ta&’)

 IL = WINIO@ (‘%rd’, N)

 END

That would certainly permit a user to change the number 1 they were presented with to
anything else, but it might allow them to change it to zero, a number greater than 50, or even to
a negative number. It would be important to limit the numbers that they could choose to
between 1 and NP. You can do this with the %il or integer limits format code, as follows:

 IL = WINIO@ (‘%il&’, 1, NL)

 IL = WINIO@ (‘%rd&’, N)

 IL = WINIO@ (‘%`il&’)

By turning off the limits using the grave modifier to the integer limits format code you prevent
those limits from affecting any further parts of the dialog box, if any. The user would still have
to type in the number. You can add a spin wheel control using the format code %dd, with the
increment specified as a parameter:

 IL = WINIO@ (‘%il&’, 1, NL)

 IL = WINIO@ (‘%dd&’, 1)

67

 IL = WINIO@ (‘%rd&’, N)

 IL = WINIO@ (‘%`il&’) ! leave out the & if this is the last WINIO@

The dialog box would then look something like this:

Figure 6.1 Simple dialog box to pick a number. It uses the default settings in Windows 10, i.e. without setting a
background colour

The user can either type in the number they want, or use the up and down arrows on the spin
wheel by clicking on them and the number will advance or retreat by 1 at a time, stopping at
the limits specified. Now, we have to add the opportunity to edit the node numbers at each end
of the link, and we will also have to add a callback function to the link number box, because if
the user changes the link number, then the node numbers at each end will also change. The
node numbers will need to be limited to a range between 1 and NP with the appropriate %il
formats. On closing the dialog, the variable N will contain the last value to appear in the %rd box.

6.2 Enhancing the dialog

We will certainly want an ordinary button to Accept the changes, and probably a Cancel button
to reject them, and obviously, we will want to be able to change the node numbers at each end
of the link. However, they must not be the same.
 Each end will need its own %rd input box, each with its own spin wheel and each limited to
the range 1 to NP inclusive.

 IL = WINIO@ (%2nlEnd 1 &’)

 IL = WINIO@ (‘%il&’, 1, NP)

 IL = WINIO@ (‘%dd&’, 1)

 IL = WINIO@ (‘%rd&’, L1)

 IL = WINIO@ (‘%`il&’)

And broadly the same for End 2. However, the values for L1 (the node at End 1) and L2 (the
node at End 2) will change if a different link is selected. That will require a callback function to
be applied to the %rd format code for the link number, requiring also a ^ qualifier as well as the
callback. The callback will need access to the LINKS array and also to L1 and L2. It will need to
reset L1 and L2 and then RETURN, but before it does so, it will need to refresh the %rd boxes for
L1 and L2, which is done with a CALL WINDOW_UPDATE@ (L1).
 Subsequently, the Accept button will need to invoke a callback to enter the values for L1 and
L2 into the appropriate positions in the LINKS array, or this might be done in a section of code
after the dialog window closes. In the former case, the Edit Links dialog stays open, in the second
case it will have closed.
 Note that we have started to proliferate callback functions, and this reinforces the need for
source code organisation, as we have yet to be able to add a link, or to remove one, and there is
the potential for a similar labyrinthine structure associated with Edit Nodes, and the properties
of those links.
 Your dialog will end up looking something like this:

68

Figure 6.2 Dialog modified to allow input of end node numbers for the link. This also uses Windows 10 default
settings

6.3 Design and layout issues: using REAL data boxes

The dialog in Figure 6.2 may well be satisfactory in the first instance, but it would be better if
things lined up, which you can do with the alignment format codes and space characters in the
relevant format string. The design of dialogs should lead the user to the right boxes almost
intuitively – if they have used Windows before, then there are conventions that they will already
know. Don’t try to reinvent the wheel, just go with what users may well be accustomed to.
 Therefore, rather than let a user accept the case where the numbers at both ends of the link
are the same, it is better to have a callback on the %rd format codes that check that they are
not. A simple, audible, warning using CALL BEEP@ may do the job, with greying-out of the Accept
button until the situation is rectified.
 Assuming that you go on to create a second complete dialog for the node coordinates using
%rf instead of %rd, and %fl instead of %il (although you probably don’t need to), then you may
well double the total number of dialog windows and callback functions.

6.4 Adding and deleting links and nodes

In the Edit Links dialog, you might add buttons for Add and Remove, so that you can add links or
remove them. In either case, you are inhibited by the values in the %il format for the link
number. There are two alternative approaches to this problem. The simplest, in the case of Add,
is to close the dialog and then reopen it with NL increased by 1, and the Link number presented
to the user as the new value of NL. Clearly, as specified, the number cannot be increased to more
than 50, and if 50 has reached, the New button should be greyed out. You will also want the End
1 and End 2 boxes to be empty, which you do by invoking %rd with the option
[initially_blank]. Even so, numeric values have to be given to the ends, and for example if
you specified 0, then the logic in your dialog box could be if the number is zero, then specify
initially_blank. It would be a good idea to keep the Accept button greyed out until acceptable
end numbers had been input.
 The second alternative is rather more complicated, but it does mean that the dialog stays
open and does not close and reopen giving a perceptible ‘blink’. The option is to use the
functions SET_INTEGER_LIMITS@ and SET_FLOAT_LIMITS@ to reset the %il and %fl limits. To use
them in a callback, you would need to know the windows ‘handle’ for the appropriate numeric
input box, which you get by asking for it via the %lc format code. %lc follows the %rd (say) and
needs an integer variable to store the handle which is returned by Windows.
 SET_INTEGER_LIMITS@ has 3 parameters: the Windows handle, and the minimum and
maximum changed values. Setting the floating point limits is similar.
 To delete a particular link N it is just a matter of moving the data for links N+1 … NL down to
N … NL-1 and resetting NL. I would advise zeroing the end numbers for the NL+1 link to simplify
matters if the user decides to add a different link.

69

It is a more complicated matter to remove a node, because to do so makes any links connecting
to that node need to be reconnected somewhere else. Moreover, if you do change the numbering
by just removing a node you probably have to re-number all of the links. One option might be
to forbid the removal of a node (by greying-out the removal option) that still had a link
connecting to it, but even so, if the number sequence for the nodes must be complete, all the
links would require renumbering anyway. What you do is up to you, and is Fortran not
ClearWin+. The correct place for these types of dialogs is in response to menu commands in an
Edit menu option, as that includes both editing existing data and creating new.

6.5 Text input and updating graphics

For something short such as a label, use the %rs format. As in the case of %rd and %rf, the input
box length can be controlled with a multiplier, and if a grey-state variable is added, the format
is modified with ~. A ^ tells the format to accept a callback function.
 The %rs format also has options, such as changing the case of what is input, echoing each
character with an asterisk if a password is entered. There is a response to %dd which is rather
different to that for %rd and %rf, and isn’t appropriate to discuss just yet. There are formats for
more extensive text input: %rs is a ‘one-liner’.
 Suppose now that the drawing surface on the client area of your main window was used to
display the network of nodes and links. In the case of a change to a link, or movement of a node,
then the callback for the Accept button could simply redraw the network after blanking the
previous drawing with a DRAW_FILLED_RECTANGLE@ of the appropriate size. You might find that
drawing such a network is more testing than you imagine: not just drawing the links, which
would be done using DRAW_LINE_BETWEEN@, or even marking the nodes, which could be done
with DRAW_ELLIPSE@ (which could be filled) or DRAW_RECTANGLE@ (also may be filled). The
difficulty would be where to display the numbers marking each node and link. If the whole thing
is drawn in black including the numbers, you won’t see them clearly because the lines and text
all overlay each other. The answer in this case is colour for the links and nodes, and positioning
the legends appropriately.
 After redrawing, use CALL GRAPHICS_UPDATE@.

6.6 The File/New menu command

When a program is given the File/Open command, and it opens a pre-existing and presumably
fully-formed datafile then it can do some drawing about the topic of the program and its data,
and the user can be presented with options to change the data and whether or not to save the
changes.
 In contrast, the File/New command starts with no data at all. The user sometimes has to input
something to get the process started. Take for example a program that mimicked a diary. The
very minimal information to set up a diary, even a blank one, would be the year for the diary
because without that information one would not know how many days to assign to February.
Based on the diary function, it might be useful to know the user’s name, and for example,
whether it was a conventional diary running from January to December, or an academic year
diary, running from September to August. Other optional input might be a colour, useful for the
front cover and to differentiate between diaries for multiple users and then used on every page
as an aide memoir. A diary is still a diary if it does not have any entries, and after inputting the
essential and optional start-up information, it is reasonable to assume that saving it as a file
would lead to a file that could be opened and re-read at a later time using File/Open.
 Sometimes, in the design of the first dialog box when a program is started and File/New is
selected, it does not deserve a caption bar to stop it being moved out of the way, and is

70

presented right in the middle of the screen so that nothing can be done other than to enter the
requisite data. It would then definitely require a Cancel button as well as an Accept button.
 Other applications may have different start-up requirements to make a meaningful dataset.
In the case of the network, it would not be to enter the number of nodes NP and the number of
links NL. It would be to start with NP=0 and NL=0, and to enable only Edit Nodes until at least 2
nodes had their coordinates specified. After that, Edit Links can be enabled. NP and NL would
then look after themselves.
 It could be argued that a network with no nodes and no links isn’t much of a network, but it
would work as a dataset that could be saved or re-opened. It might be rational to follow
File/New by opening Edit Nodes automatically – such decisions are left to you to program.

6.7 An example

An example from my own programming is the one that plots student topographic surveys made
using a modern, sophisticated, electronic theodolite that is grandly called a total station. The
total station is set up on a tripod over a point with known coordinates, and the instrument is
sighted at a second point with known coordinates, and the angle measurement system zeroed.
The survey then proceeds effectively by sighting through the total station telescope at a
reflector target carried on a pole by one student and positioned at various places with the
instrument indicating the horizontal angle and distance, both of which are measured
electronically. Modern instruments are quite capable of recording this information onboard
and with the appropriate software producing a map (back at the office, for obvious reasons).
For students learning the techniques of surveying, learning the on-board software constitutes
training not education, as the software is very different from manufacturer to manufacturer.
For the purposes of education, students record the readings in a survey book and then they have
to plot out their survey. Decades ago, they would have done it with a big protractor and a scale
rule (and they wouldn’t have had a total station, but would have used a more primitive optical
system). The problem basically is that you have learnt how to plot things after the first reading
and after that it just becomes a time-wasting and boring exercise. A program that can plot out
your data is then something that not only solves the boredom and time-wasting problem but
may also shorten a field course by days, saving expense, staff time and keeping interest going.
 The program to solve the plotting problem therefore is quite simple: let the student groups
input their readings and produce a plot. The initial dialog simply has to record the coordinates
of those two points – where the instrument was set up, and where it was sighted to. Then we
get to an interesting problem and that is whether or not to make the program useful for
anything else, in my case, to plot surveys that I might have done myself! If I do them, I will also
include information on levels, but for the student exercise those levels aren’t recorded. A
further problem is to define how the printer will scale the survey when it is plotted.
The figure below shows that first setting-up dialog box.
 The figure actually contains two versions, both my initial efforts as the first program I ever
wrote6 using ClearWin+, and secondly on the right, and evolved version of the program and of
the corresponding dialog. What I had learnt in the interim was that instead of the program being
run on desktop computers it was going to be run on laptop computers where the screens were
not only smaller but were widescreen. As part of my learning process, I discovered rather better
how to link the data boxes in terms of meaning. Even so, I hadn’t learned every trick in the book.
Also, over several versions of Windows (and these dialogs are taken as screenshots under
Windows 10) it has become more normal to have wider buttons and also to right justify them
rather than centre them. You will probably see that surveying does not use x and y coordinates

6 Actually, it was the first that was fully-developed and released on users other than myself.

71

but refers to them as Eastings and Northings, and the pole on which the target is carried around
may well be colloquially called a ‘wander pole’ but it is properly called a ‘detailing rod’.

Figure 6.3 Startup dialogs. Left: first version, Right: evolved version. These dialogs use a background colour
chosen from one of the colours used by Windows (one called ‘btnface’). The buttons are also enhanced by use of

a setting discussed later in the book.

If I were writing the application today, then I would make sure that the Next button was greyed-
out until satisfactory information had been entered. I might also produce a captionless version
if the File/New menu command was selected, but a version with the caption if the initial setup
information was revisited. However, I did discover that there had to be limits on the plot scale
or students might select a scale of 1:1 requiring thousands of sheets of paper to be printed! (and
so there are limits set on the acceptability of the plot scale value).
 The dialog is made up of text entry boxes and entry boxes for real numbers, together with a
single %`rb tick box (see the following section 6.10) and some %rs boxes for text entry. There
aren’t any limits, except on the scale box, and no spin wheels. The dialogs do, however, have
coloured backgrounds, using the %bg format code. Garish colours do not work well, and
although RGB colours can be used, there are some colours already specified in Windows that
can be used. I often choose the button face colour, as in:

 IA = WINIO@('%bg[btnface]&')

6.8 Dialog box design

For purposes of program development, it is extremely useful if you do not create long format
strings in any one WINIO@ function call, but instead confine yourself to one data input box per
WINIO@ statement. Of course, this is a recommendation, and you must program in the way with
which you feel most comfortable.
 I recommend that at this stage you stop reading this book and go and develop some dialog
boxes to suit your own particular program. Mastery of the aesthetics is something that you will
probably only acquire by trial and error, and I suggest that you do not aim for anything terribly
complicated, at least initially.
 Now that many computers, especially laptops, feature wide screens with a 16:9 or 16:10
aspect ratio instead of the once ubiquitous 4:3, it makes sense to have dialog boxes that are of
a similar aspect ratio, i.e. even if not exactly matching the screen aspect ratio, then certainly
wider than tall. In principle, Windows programs should be able to operate on a screen with
800:600 pixels (the old 4:3 aspect ratio) and the design of dialogs is central to fitting everything
in.

72

As an example, I remember in my early efforts programming a dialog box to accept an angle and
a distance, along with certain other things for that student topographic survey data plotting
program. The dialog box I came up with looked like the one on the left in Figure 6.2.

Figure 6.2 Two variants of a dialog. Left: early version, Right: evolved version.

The early version of the dialog box was perfectly adequate and simple to use, until one day
someone tried to use it on a very old and minimal specification laptop with an 800 x 600
resolution screen. This is the minimum resolution that windows should run on, but as it
happens the least specification that the program had been tried on had a vertical resolution of
768 pixels, where the dialog box fitted perfectly adequately. The opportunity was taken to not
only shrink the vertical height of the dialog in the course of an update to the program but also
to rationalise one or two things, not least the input of the degrees, minutes and seconds into the
layout so that the user was helped slightly as to what was required by way of input.
 At the same time the legends particularly on the radio buttons were improved and so the
distances and heights were given units.
 Note that integer limits were specified for degrees (0..359), minutes (0..59) and seconds
(0..59) and the boxes were shortened to make this slightly more evident. The limits naturally
were fixed. As an aside, some nations prefer to use an angular measurement system in which a
hundred units make up a right angle, and these units are called grads in some countries and gon
in others. The angles are recorded to 3 decimal places which is probably how the instruments
record them, thus giving units of the third decimal place that one might call milligrads or
milligon. Entering angle data in grads is therefore simpler than in degrees, minutes and seconds.
A similar point is that metres are easier to enter than feet and inches, and kilometres easier than
miles and yards, or miles and feet, or even miles and furlongs, or the dreaded unit of rods, poles
or perches! The differences need to be taken into account if your application copes with
different systems of measurement.
 The action buttons could in principle be made even more explanatory with the use of an icon.
The fragment of code that follows illustrates the WINIO@ function calls to generate the input
boxes for the angle and distance:

 IA = WINIO@ ('%2nlAngle%ta&')

 IA = WINIO@ ('%il&', 0, 359)

 IA = WINIO@ ('%`bg[window]%4rd[INITIALLY_BLANK]°&', IDEG)

73

 IA = WINIO@ ('%il&', 0, 59)

 IA = WINIO@ ("%`bg[window]%3rd[INITIALLY_BLANK]'&", IMIN)

 IA = WINIO@ ('%il&', 0, 59)

 IA = WINIO@ ('%`bg[window]%3rd[INITIALLY_BLANK]"&', ISEC)

 IA = WINIO@ ('%`il&')

 IA = WINIO@ ('%taDistance &')

 IA = WINIO@ ('%`bg[window]%8rf[INITIALLY_BLANK]m&', DIST)

The numeric values are input into three %rd boxes whose sizes are specified, and a much larger
%rf box for the distance. Spacing is managed by means of the space characters in the format
string and ‘tabs’ input using the %ta format code. Limits are defined for the integer input %rd
boxes using the %il format code and its parameters, and finally turned off with %`il. It doesn’t
seem to be necessary to turn off one set of limits before specifying another. If the user is
specifying a new observation complete with its angle and distance, then the input boxes are
specified as initially blank. There is a second pass possible for when the boxes contain numbers
and are being presented for editing in which case the boxes are not specified as initially_blank,
the logic for which is which is pure Fortran! Also, the opportunity has been taken to colour the
background of the boxes for various uses, but in this pass through the formation of the dialog,
the background for the boxes is a standard colour specified by the keyword window, the
numeric value for which is set in WINDOWS.INS.
 In summary, beware of making dialogs too tall. Consider the layout of input boxes to assist
the user in understanding how the values are intended to relate to each other (for example,
degrees, minutes and seconds).

6.9 Action buttons in the example

The dialog in figure 6.2 is really a simple data entry form, tailored to the specific needs of those
student groups and in principle, little different to the dialogs for the network. Essentially, they
put numbers in the appropriate boxes and then press the Next button. So far, so good. But the
target user is a student or a student group and that means that they make mistakes. Making
mistakes requires the ability to move backwards and forwards through all the readings,
correcting errors. What is more, because the way the program works (extremely simply) it is
possible to take the readings along a particular feature, for example a kerb line, and then when
all the points plotted to join them with the line. In a commercial application you could imagine
many different types of line pattern and colours, but for a simple student exercise, solid, dashed
or no line at all very sensible minimal options, intended to keep the learning process as short
as possible.
 Because of the way the program works with the opportunity to join the points with a line,
then the opportunity to insert a point out of order or actually to put a point in which was
mistakenly left out as they entered the readings, is in that set of action buttons. When reviewing
data as well it is very useful not to have to scroll through the entire list (using Next and Back)
but having the ability if necessary to jump to a particular point in the list using Go To.
 Not all action buttons need to have a callback. For example, in the data entry dialog here,
pressing the Next button has no dialog, but instead, it is as though the statements that follow
the last WINIO@ statement start to be executed. The program code can look at the return code
from WINIO@, which in this case is the variable IA, and it determine which button was pressed.
The close box returns 0, and the individual action buttons in the order in which they were
specified in the sequence of WINIO@ function calls, are numbered 1 to 6 inclusive.
 The way the program is designed, the data input form closes when any button is pressed, and
it stays closed if the return code is 0 or 6, although the point data values are saved if they are

74

not all zero. When the Next button is pressed, the return value is 1, and that causes the displayed
data to be saved, and the point number to be incremented. If the resulting number is in the
existing list of points, the data values are extracted from the arrays of values, and then are
available to be displayed, and possibly edited, whereas if the point number is incremented to
extend the list, the boxes are all displayed with the initially_blank attribute. Back is similar, but
the point is decremented, and the user can’t go back beyond point 1, at which state the Back
button is greyed out. Go To launches a separate dialog to get a relevant point number to display,
and Insert and Delete act on the current point, and may force a reshuffle in the data set.
 The momentary blink when a dialog box is closed and reopened is sometimes distracting and
rather than exit to do the logic after the specification of the contents of the dialog box,
sometimes it is better to make use of callback functions and keep the dialog box open. In this
particular application, student users have reported that they are not distracted by the blink, but
instead regarded it as confirmation that their data entry has been accepted. In simple
programming terms, exiting the dialog and re-entering it allows the initially_blank attribute to
be applied in a very simple way: you either have it or you don’t. You also have the choice as to
whether to write the two variants of the WINIO@ format code (i.e. with or without
[initially_blank] explicitly as two separate statements, or to decide whether to splice in the
option using concatenation operators as in this example where the alternative would be to
declare INIT = ‘’:

 INIT = ‘[initially_blank]’

 IA = WINIO@ (‘%rd’//INIT//’&’ etc

It is possible to set the action button return codes in a different order under program control,
but I think that is not wise and using the default numbering has less potential for errors.
 Updating the limits was made easier when the previously undocumented subroutines for
updating limits were improved and documented.

6.10 Option selection: radio buttons and tick boxes

Windows provides two ways for a user to make selections (or choose options) when using a
dialog box, and there are radio buttons and tick boxes. In current and past incarnations of
Windows, the former was represented by a round icon which was ‘hollow’ if not selected, and
‘filled’ if it was. The latter was a square icon, ‘hollow’ or empty if not selected, but filled with an
x if selected. Both types of option control are specified in ClearWin+ with the %rb format code,
with tick boxes requiring a particular qualifier (the grave symbol). I note that currently, tick
boxes have a tick!
 As far as ClearWin+ is concerned, both radio buttons and tick boxes can be ‘ganged’, that is
that only one of a set can be selected, and selecting that one deselects the others in a set.
However, the normal behaviour of a conforming Windows application is for radio buttons to be
ganged and tick boxes not. Radio buttons and tick boxes can also have associated callback
functions, and while that does mean that they can function as action buttons, they should not
be used that way but instead should only be used locally, for example to grey-out data input
boxes that aren’t relevant to the option selected.
 Each option control needs its own INTEGER code or state value which is set to 1 when the
option is selected, and to 0 when that option is deselected. Ganging the option controls means
that this setting is done automatically. When a dialog is set up it is conventional to initialize a
set of ganged radio buttons with the most common option being the one that is preselected.

75

As with so many controls in dialog box windows, the controls are easiest to line up if the
explanatory text lies to the right of the control. The judicious use of %ob … %cb boxes (which
may be invisible) is helpful in grouping the controls.
 The outline boxes have numerous attributes, including invisible, named_l (where the name is
given and is left-justified), and even to create a status bar. There are numerous other box
options, including being able to set up a grid of boxes. For details, please see the documentation
in the help file. On the grounds that it is not conventional to gang check boxes, we might have:

 IC = WINIO@ (‘%ob[named_l][Dorothy]&’)

 IC = WINIO@ (‘%`rb[Ruby slippers]&’, IOZ)

 IC = WINIO@ (‘%`rb[Tin man]&’, JOZ)

 IC = WINIO@ (‘%`rb[Lion]&’, KOZ)

 IC = WINIO@ (‘%`rb[Scarecrow]&’, MOZ)

 IC = WINIO@ (‘%cb’)

in which case a box titled Dorothy would appear with a check box for Ruby slippers and for all
of her 3 companions on the yellow brick road. It would duplicate the information to have a
ganged check box Without ruby slippers, as the two cases are with tick or no tick (formerly, the
box was filled with a cross), and that duplication is something to avoid. All the companions are
either present or not present as well.
 A similar selection process could include radio buttons, which in the case that they are not
mutually exclusive might be ganged. The term radio button harks back to those early transistor
radios (and indeed, some still in cars) where pressing one button to select it releases all the
others.
An example where radio buttons are ganged is:

 IC = WINIO@ (‘%ob[named_l][Hero]&’)

 IC = WINIO@ (‘%3ga&’, LEAD_ACTOR(1), LEAD_ACTOR(2), LEAD_ACTOR(3))

 IC = WINIO@ (‘%rb[Ajax]&’, LEAD_ACTOR(1))

 IC = WINIO@ (‘%rb[Achilles]&’, LEAD_ACTOR(2))

 IC = WINIO@ (‘%rb[Odysseus]&’, LEAD_ACTOR(3))

 IC = WINIO@ (‘%cb’)

Values of 1 need to be given to the initial choice and 0 to the others before the set is displayed.
The state variables can also be used with other controls, for example, controlling grey states
etc. The Fortran 90 ability to initialise a whole array in one statement is useful, especially with
long gang lists, so we might have:

 LEAD_ACTOR = 0

 LEAD_ACTOR(1) = 1

instead of needing to define all three. Not much is saved with only three variables, but a lot of
statements are saved for longer lists. You can also roll the statements onto one line:

 LEAD_ACTOR = 0; LEAD_ACTOR(1) = 1 ! initialise ganging

which is sometimes helpful and adequately clear whereas combining quite different statements
may not be.

6.11 Option selection: drop down lists

You have several choices : %rs with %dd, %ls, and a multiple selection version of %ls.
 When %dd is used with %rs, it should be placed the before %rs format code. In this case it
should have a non-zero step value (which is ignored). The subsequent %rs box should have a

mk:@MSITStore:C:/Program%20Files%20(x86)/Silverfrost/FTN95/ftn95.chm::/ClearWin+/formats/_rs.htm

76

call-back function which uses CLEARWIN_STRING@('CALLBACK_REASON') to identify the reasons
'SPIN_UP' and 'SPIN_DOWN'. The call-back function (in this case KB_STRING) must provide the
response to the spin, because the control itself does not.

 WEEKDAY = ‘Monday’

 IK = WINIO@ (%dd%^`rs&’, 1, WEEKDAY, KB_STRING)

This variant of the control should be used when the next or previous display value is obvious,
for example, by cycling through the days of the week or months of the year, and moreover, it
should be configured to that the list is endless or ‘rolls over’. An example of roll-over would be
to follow Sunday by Monday again, or December by January. Other lists where the sequence is
obvious includes paper, scissors, stone or tinker, tailor, soldier, sailor etc. The reason that your
callback should roll over is that the spin wheel arrows do not grey out when the end of a list is
reached, because there is no pre-defined list, and the sequence should be obvious because the
user does not get to see all the options without scrolling through the whole list.
 The advantage of %dd plus %rs is that the list does not need to be assembled, and its
disadvantage is the need for roll-over. In comparison, %ls needs a list to be assembled, and
because the user should be able to see all the options, then the list needs to be comparatively
short.

 CHARACTER*(15) LIST(6)

 LIST(1) = ‘Miss Scarlet’

 LIST(2) = ‘Colonel Mustard’

 LIST(3) = ‘Professor Plum’

 LIST(4) = ‘Mrs Peacock’

 LIST(5) = ‘Mr Green’

 LIST(6) = ‘Mrs White’

 NUM = 1

 IW = WINIO@ (‘%15.6ls&’, LIST, 6, NUM)

In this case, the sequence is not ‘obvious’, and it is unlikely that the user will want to select the
next or previous value, but will want to see all options. NUM is the number of the initial selection,
but this will be altered and returned as the number of the selection made by the user, so it has
to be a variable. The control can be greyed-out.
 The length of the list is fixed, but if there are blank entries (e.g. LIST has 8 values, and the last
two are blank) then two further entries could be added, or items removed from the display by
blanking them.
 In Figure 6.2, the text entry box with a %rs was replaced with a drop-down list using %ls, and
that reduced the generality of the application while increasing its utility to the identified users,
whose surveying is limited to the items in the list during their field course. An alternative might
be to have a list item ‘Other’, which if selected would un-grey a text entry box. The items in a list
box control are ‘ganged’, meaning that only one can be selected at a time (See section 6.13 for
ganging). If the option must exist for none of the items to be selected, an option ‘None’ or similar
needs to be provided. This has been done for the radio buttons in Figure 6.2. It is not necessary
to do it for tick boxes.
 The list box is suitable for longer lists than can easily be catered for with radio buttons.
Typically, radio buttons are useful when the user needs to make a choice between up to half a
dozen items or less, as for more, the repetition of the format takes up too much space in the
dialog. List boxes come into their own as the radio button sequence begins to take up too much
space, and list boxes look somewhat ridiculous with only 2 or 3 choices. They also have a limit
on length, especially towards the bottom of a screen, and the number of items displayed can be

77

set along with the width of the display, respectively the 6 and the 15 in the above example,
which displays the whole list. If the depth of the drop-down part of the box does not show the
whole list, then a scroll bar is provided automatically.
 There is also a multiple selection box, %ms, and an editable combo box, %el, for which you are
referred to the help file for details.

6.12 Pop up information dialog boxes

At various times in the execution of a Windows application it is necessary to pop up dialog boxes
to inform the user of various things, including if they’ve made a mistake and why, when certain
actions have been completed such as saving a file or issuing a print job to Windows print
spooler etc. It is possible to proliferate such boxes by having one for every event, or even a
selection with different buttons, different standard icons and so on. However, in the interests
of brevity (and that’s a joke because there is no such thing as ultimately a brief Windows
program source code) you might find it useful to create and use a single dialog box that is
configured on the fly.

 SUBROUTINE POP (CAPTION, LINE1, LINE2, ICON, NBUTTONS, BUTTONLABELS, NRET)

C --

 CHARACTER*(*) CAPTION, LINE1, LINE2, ICON, BUTTONLABELS(NBUTTONS)

 IW = WINIO@(‘%ca[‘//CAPTION//’]%si’//ICON//LINE1//’&’)

 IF (LINE2 .NE. ‘’) THEN

 IW = WINIO@ (‘%nl’//LINE2//’&’)

 ENDIF

 IW = WINIO@ (‘%2nl%rj&’)

 DO 10 I=1,NBUTTONS

 IW = WINIO@ (‘%bt[‘//BUTTONLABELS(I)//’ &’)

 10 CONTINUE

 IW = WINIO@ (‘%sf’)

 NRET = IW

 END

An alternative to coding a general-purpose pop-up message dialogs is to proliferate dialog
subroutines with one for just about every purpose. The example I have given above would need
all its parameters setting before it was called, and the total length of code might not be much
shorter overall than generating custom dialogs for every use. There is, however, a third option,
which is to include all possible caption, text, icon type and button labels and numbers in a
database of arrays and then simply call up the pop-up dialog using an index number from the
database. Your personal preference will depend on your programming style. Mine is to have
subroutines, in which case the button selection is returned as a parameter. Your programming
standard might well be to declare the arguments with their INTENT attribute, in which case,
IRET would be:

 INTENT (OUT) IRET

Or alternatively, to program the pop-up information dialog as a function and have a selected
button as its return code. A further refinement might be to indicate to the routine which of the
buttons was to be the default one, although that may be in some cases simply assumed to be the
first one.

78

6.13 Do you wanna be in my gang …

Some sub-menu items as well as radio buttons can be effectively ganged, meaning that only one
of the group can be selected at any one time. You have to take care not to make work for
yourself, and so, for example, in a case where a coordinate grid is drawn on a drawing surface,
and the logical choice is a grid or no grid, then only one tick box is required, and it would not be
right to have 2 radio buttons labelled ‘Grid’ and ‘No grid’, as a ‘Grid’ tick box that isn’t ticked
means ‘No grid’.
 If the choice were between ‘No grid’, ‘Blue grid’ or ‘Green grid’ (‘No grid’ because the other
two options mean that there is a grid), then the three need to be ganged. It would make the
programming more complicated, and the result actually less intuitive, to have to make the
choice between ‘Grid’ and ‘No grid’, keeping the green and blue options greyed out while ‘No
grid’ is selected.
 In a dialog, an %ob - %cb box frame labelled ‘Grid’ would mean that you only needed radio
buttons ‘Green’ and ‘Blue’ – but they could not be ganged through the %ga mechanism, because
that would mean that the two could not be deselected at the same time. You would have to do
the logic yourself in the callback. Instead of a logic involving IFs, a radio button state can be
changed with:

 ISTATE_1 = IABS (ISTATE_1 – 1)

ABS works with both INTEGER and REAL these days, but I am a traditionalist! However, I do forget
cleverness like this, so I usually put in an inline comment when I use it.
 And in the example, ISTATE_2 has to be 0 if ISTATE_1 is 1, but both can be zero. For clarity, an
IF is best, and not some fancy operator that might save a processor cycle or two.
 As mentioned above, some Menu options may have a tick as well as a grey option, accelerator
key(s) and the obligatory callback. The tick is specified with a qualifier hash character (#) and
the menu item then also needs its own state variable. Top level menu items cannot be ticked,
and the order of the parameters is:

State variable grey code callback
 Qualifier # Qualifier ~ Qualifier not required

Any associated accelerator key sequence is given after a TAB character as above.

6.14 Outline boxes

You may have noticed that a sequence of radio buttons or tick boxes positioned one above the
other using %nl lines them up beautifully, which is one advantage of having the legend to the
right. Input boxes for real, integer and text variables tend not to line up. It might be possible to
get them to line up by positioning their legends to the right of the boxes, and that is one option.
The other option is to use outline boxes to force alignment.
 An outline box consists of a pair of format codes, beginning %ob and finishing %cb. Currently
there are 17 options that may be used to show how a box should be drawn, with some of them
duplicating functionality. For example, %ob[no_border] is the same as %ob[invisible]. I tend
to use the invisible boxes rather a lot to make things line up. Three of the options will splice a
name into the top line of the box either left justified, right justified or centred. Eight of the
options relate to the appearance of the box, a few are duplicates and one provides one of the
alternatives for setting up a status line. See the online help for more details.

79

 I tend to use named_l or invisible options most of all. You can also set up a grid of boxes, for
example with %3.2ob, which was set up a grid of six boxes: three across and two down.
When contemplating using outline boxes you should consult the online help file for some or all
of the options. The following example makes three %rd data input boxes line up despite the fact
that they have different length captions:

 IW = WINIO@ (‘%ob[named_l][Coordinates]&’)

 IW = WINIO@ (‘%ob[invisible]&’)

 IW = WINIO@ (‘Easting (m)%nlNorthing (m)%nlOrtho height (m)&’)

 IW = WINIO@ (‘%cb%ob[invisible]&’)

 IW = WINIO@ (‘%10rf%10rf%6rf&’)

 IW = WINIO@ (‘%cb%cb’)

6.15 Lining things up

You might think that lining things up in a dialog box would be dead easy – but it’s not. Part of
the reason is that the fonts used by default are proportionally spaced, but that’s not the whole
story, even though it accounts for some horizontal spacing issues. Another part of the problem
is that some of the objects (which Windows documentation calls ‘controls’) aren’t exactly one
row high or an exact number of grid steps wide. If you use %gd then you can see what space
those objects actually use.
 Your first attempts at programming dialog boxes will probably not please your sense of
aesthetics at all. You will find yourself fighting ClearWin+’s spacing by adding extra blanks into
the WINIO@ format strings, or even worse, having discovered some format codes for positioning
things (Hint: the format codes are %ap and %rp). Those positioning formats will eventually have
you pulling your hair out. Why? Well one of their issues is that a new version of Windows will
almost certainly change the default font, or the font metrics, and that will undo all your careful
spacing. Indeed, sometimes those changes will occur with a Windows Update. Another
possibility that I recommend NOT to use is to change the %ta tab spacing with %tl.
 It is far better to use ClearWin+’s automatic spacing, because then those changes to Windows
defaults will have minimal effect.
 If you used tick boxes (formerly check boxes) or radio buttons on successive lines within an
%ob…%cb structure, you will notice that they DO line up vertically. That is because they all align
to the left margin of the structure, with the text, which may be of variable length, to the right.
The width of the bounding box is set by the extent of the longest label. So there’s a hint with %rd
and %rf boxes: put the text AFTER, not before, the numeric control.
 Another hint is to put all the text in one invisible %ob…%cb structure, with the %rd and %rf
boxes in another invisible %ob…%cb structure to the right of it.

6.16 Backgrounds for dialog boxes

 If you look again at Figures 6.1 and 6.2 you will see that the dialog boxes have a grey
background, set with %bg[btnface] where btnface is the default colour for button faces in the
particular version of Windows that the application runs in. That was very much the style of
things in Windows 7. However, it isn’t a great idea to give dialogs a background colour, and it is
better to stick with defaults. The reasons range from making your app look old fashioned when
Microsoft changes the Windows defaults to making your text look unreadable, especially if ever
‘greyed out’. Some programmers like to impose their preferred style and corporate colours on
dialogs: it depends on how much work you want to give yourself I suppose!

80

6.17 ‘Sticky’ dialogs

What I refer to as a ‘sticky’ dialog is a dialog window that can be moved around the screen, but
when re-opened after being closed, re-opens in exactly the same place as it was when it was
closed. To do this, you need to memorise the coordinates on closure, and use them to position
the dialog when it is (re-)opened. In both cases the coordinates are the upper left corner of the
window. You will need to position the window on startup using the %sp (set position) format
code, and find its location on closedown using the %cc format code. Now, you should remember
that every dialog window will need its own position information, and, the first time the window
is displayed, that the %sp format code will need positional information – which needs to be
defined on program startup.
 I have a program that has 80 dialogs, the pixel x and y coordinates of which are predefined in
two arrays stored in their own COMMON block with two other variables as:

 COMMON /STICKY/ IPOSX(80), IPOSY(80), NPOS, KHAND

IPOSX and IPOSY are fleshed out on program initialisation. Each dialog has its own ID number,
which is set on entry to the dialog, and stored in NPOS. The position setting WINIO@ call is:

 IA = WINIO@('%sp&', IPOSX(NPOS), IPOSY(NPOS))

But to find the coordinates on closure a somewhat more complex procedure is followed, as the
%cc format code needs a callback function, and that callback function also requires to know the
handle of the window, hence:

 IA = WINIO@('%hw%cc&', KHAND, KB_GET_POSITION_FN)

That callback function employs the routine GET_WINDOW_LOCATION@. The routine also returns
the window width and height, which aren’t used.

 INTEGER FUNCTION KB_GET_POSITION_FN()

C -------------------------------------

C

C ... called on closure control %cc of a sticky window to get final

C position, so window can be restored there when next opened.

C

C --

 COMMON /STICKY/ IPOSX(80), IPOSY(80), NPOS, KHAND

 INCLUDE <WINDOWS.INS>

C --

 CALL GET_WINDOW_LOCATION@ (KHAND, IX, IY, IWIDTH, IHEIGHT)

 IPOSX(NPOS) = IX

 IPOSY(NPOS) = IY

 GET_POSITION_FN = 0 ! Guarantees continue to exit

 RETURN

 END

(My own routines are rather more complex than this, because they also contain code to check
for acceptable positions).

81

Now, all of this works fine if all dialogs are called from the main window. However, sometimes
a dialog launches another dialog, for example, if a dialog has a Help button that launches a
subsidiary dialog. That situation means that the variables NPOS and KHAND defined above have
to be saved, which could be done by turning them from single values into arrays, or by any other
mechanism that you prefer.

6.18 A note to remember (again) – what are callback functions for?

You have probably forgotten what Section 1.12 said about callback functions. You could flip
back, but here it is again.
 Most controls can have an associated callback function – menu items must have a callback,
unless selecting them invokes a further submenu. The reason for the menu criterion is that
menu selections cause actions to be taken.
 In a dialog, the only action buttons are recognisably buttons with clear action labels. Many of
them don’t need callback functions, because selecting them simply closes the dialog, and the
user can determine which button was pressed and therefore what action to take by inspecting
the return code. It is only an action button that may not close the dialog which needs a callback,
for example, an action button labelled Clear may require various selections made in the dialog
to be changed to default (usually zero or blank) values and the dialog is not closed.
 Other controls, such as data input boxes, radio buttons and tick boxes, sliders and so on may
have callback functions. However, such callback functions should only be used where one
option being selected has an impact on other controls in a dialog, and should not be used as
action buttons.
 So here’s my example. A surveyor has 4 pegs in the ground, and he knows the coordinates of
each of them. For convenience, they are lettered A, B, C and D. Let’s forget the start of the
program where he has to input the coordinates of the 4 pegs, and move on to the bit where after
he has set up his theodolite on a particular peg, he sights to another peg, and zeroes all the
scales on the instrument. That means that by reading angles and distances, he can locate other
things like corners of buildings, gateposts and so on, so that he can plot a map (and the program
does that for him). At some point, he has to have a box in which he enters the name of the peg
over which he has set up, and the name of the peg he has initially sighted to (the target). That
takes 2 boxes. Logically, drop-down selection boxes are used, because we don’t want the user
to enter E in the set up box when only A..D are available. However, if (say) A is entered in the
first box, then A is not a valid selection in the target box . The callback for the setup drop down
box must remove A from the list available for the target, and then un-grey the second box. A
callback function is needed for the second (target) box because once a value has been selected,
it should be possible to un-grey the Accept action button, which should stay greyed out until the
two peg names have been selected.
 Go on – try to program that for yourself. It’s a great exercise. It also lets you gain experience
in laying out dialogs as well as writing callback functions.

82

7 Graphical interaction – early steps

By graphical interaction I mean responding to mouse operations taking place in the area
occupied by a %gr drawing surface. The ability to have this interaction is part of what makes the
Windows graphical user interface both graphical and user-centred.
 It isn’t necessary to have a full graphical interface in certain classes of program, even though
they present an image within a drawing surface. For example, imagine that the drawing is of an
object that has different temperatures over its surface. You might wish to draw line contours of
those temperatures, or coloured contour bands. In that case, you could switch between the line
contours or the contoured bands with a selection in the menu bar. All that would be necessary
in that case is to redraw the object and the surface contours in the appropriate format as a
response in the callback to those menu items. You don’t necessarily need to do anything directly
on the drawing surface.

7.1 Mouse clicks

The way that graphical interaction is programmed is via the mechanism of the callback to the
graphics drawing area. If a lot of different types of interaction occurs, then this callback function
can become extremely long and complicated. What is fairly important is to exit the callback as
quickly as possible in the event that there is nothing to do, or in any case, as soon as possible.
 Most Windows mice have at least three buttons: left, right, and centre, with the centre button
usually provided with a scroll wheel. A button can be pressed and released which constitutes a
single click, or two clicks in close succession to signify something different. A click may be
accompanied by one of the keys on a keyboard being pressed at the same time, and facilities are
made within ClearWin+ for the keys Shift or Ctrl (or indeed, in combination) to be pressed along
with a particular form of mouse click.
 All of the above can be styled mouse events. They are all static events, because the mouse
pointer (ideally) is not moved while the buttons are depressed and released, but there are also
dynamic events, which occur when the user moves the mouse while holding one or more
buttons in the down position. With a computer that has a touch sensitive screen, various
gestures that the user may make are interpreted into the equivalent mouse movements. A final
type of dynamic event is when the user rotates a scroll wheel. In order to respond to mouse
events, the user must decypher within the graphics callback what sort of event it is responding
to. ClearWin+ has two categories of a response to a mouse event, a simple but standard mode
and a more complete and complicated mode, the latter being selected when the %gr is specified
with the optional parameter full_mouse_input.
 In the standard mode, the mouse events are filtered and presented to the callback only in
terms of clicks associated with each of the three buttons, or as a double-click on the left button.
In full_mouse_input mode, the graphics callback is presented with many more mouse events in
a sort of torrent, and it is left to the graphics callback to discard meaningless events. This need
to discard many of the mouse events is a significant drawback to using the more complete mode,
but even the standard mode has its drawback and that is that a double-click event is also
preceded by a left click event, which means that the left click has to be associated with a fairly
benign action or one that is undoable if it is followed by a double-click event.

83

7.2 Standard mode

In standard mode, the reason for a graphics callback having been made is determined by means
of the same mechanism used to determine if the callback is in response to the resize event:

 = CLEARWIN_STRING@ (‘CALLBACK_REASON’)

The responses will be one of:

MOUSE_LEFT_CLICK

MOUSE_MIDDLE_CLICK

MOUSE_RIGHT_CLICK

Or

MOUSE_DOUBLE_CLICK

The next step is to determine the position within the drawing surface of the mouse pointer at
the time the button was clicked. The mechanism for this determination uses the
CLEARWIN_INFO@ function as follows:

 IXP = CLEARWIN_INFO@ ('GRAPHICS_MOUSE_X')

 IYP = CLEARWIN_INFO@ ('GRAPHICS_MOUSE_Y')

To obtain the equivalent coordinates in the real world system I do a reverse of the original
scaling function:

 RX = (IXP-ixres/2)* SCALE + p2x

 RY = p2y - (IYP-iyres/2)* SCALE

to sort out the button state, consider a little bit of code as follows:

 IFL = CLEARWIN_INFO@ ('GRAPHICS_MOUSE_FLAGS')

 IF (and(IFL,MK_SHIFT) .EQ. MK_SHIFT) THEN

 ISHFT = 1

 ELSE

 ISHFT = 0

 ENDIF

 IF (and(IFL,MK_CONTROL) .EQ. MK_CONTROL) THEN

 ICTRL = 1

 ELSE

 ICTRL = 0

 ENDIF ! some users may like less indentation for ENDIF !

On review of this book, the question was asked as to whether the indentation for ENDIF is
correct. The code fragment was extracted verbatim from a working program, and that is what
it is there, including the indentation of the whole IF sequences. I’m not a fan of indentation
anyway, much preferring blank lines. You must program in your own preferred style – my rules
are often honoured more in the breach than in the observance!7
 In the above fragment of code you will see another of my programming styles in action, and
that is while I always try to program in capitals if I want something to really stand out I do it in
lowercase. Apart from this single usage in sorting out the various flags, I never did bitwise
operations and the use of lowercase for the name of the ‘AND’ function highlights to me that it is

7 Hamlet, apparently. Act 1, scene iv, if you must pursue the origins of the phrase.

84

something out of the ordinary. Apart from ClearWin+, I also never use external functions or
subroutines except in WINIO@, but I’ve highlighted those by pre-fixing the names with my special
character sequence KB_. Silverfrost generally highlight their own functions and subroutines by
finishing the names with the ‘@’ symbol. There are multiple ways of drawing your attention to
these things. The values of MK_SHIFT and MK_CONTROL are defined in WINDOWS.INS
 What you do in response to that particular click and button combination is then entirely up
to you. What I do is to jump to the appropriate bit of code and execute it.

7.3 Full mouse input mode

The welter of mouse events that cause the invocation of graphics callbacks have to be dealt with
as quickly as possible. A simple way of dealing with them is to record the previous event’s
parameters and compare them to the current event. If nothing has changed, then the current
event can be discarded and control return using the return code 2. If, on the other hand,
something has changed, even then it is possible that no action needs to be taken other than to
save the current event’s parameters and wait for the next mouse event. When something
changes that creates the need to respond, then you must determine what the appropriate
response is and do it.

7.4 Selecting an item

The simplest way to select an item is to move the mouse pointer onto the item, and click the left
button. In standard mode, that produces a MOUSE_LEFT_CLICK event, but in full_mouse_input
mode, may create several events, first as the mouse pointer is moved, then as the left button is
depressed, and finally as the button is released, followed by a set of events that tell you where
the mouse pointer is located.
 Let’s consider the standard mode first, in the context of that network problem. Suppose that
the nodes were marked by a 5 pixel square, then the click would be ‘on’ the node if it was
anywhere within plus or minus 2 pixels of the node’s pixel coordinates, which might require
the callback function to work through a list of those coordinates to find the one that is most
likely and to select that. If the node was identified as lying within a circle, then the formula
would probably be a little more complicated.
 It will also be possible to select one of the links in a ‘nodes and links’ graphic by moving the
mouse pointer approximately onto it and again clicking the mouse left button. You could
differentiate between selecting a node and selecting a link by using different mouse buttons, or
simply by where on the drawing surface the mouse pointer was when the left button was
clicked. You could, for instance, select a node with a left-click, and a link with a right-click or a
double-click. If you were in standard mode, then you will only be able to select something with
a double-click if the left-click did not do anything because you weren’t close enough to a node
for example.
 The strategy must be left to you. However, it normally requires a great deal of thought
because if you considered adding a link, then you would for example imagine that a left-click to
select one node followed by a right-click to select the other would define a new link. That would
leave you the problem of how you created a new node. Perhaps that could be a left-click but
with the shift key depressed. Then, you have two problems: firstly, that you cannot define the
coordinates of that new node to better than a single pixel resolution on the screen, and
secondly, it will start life unconnected to anything.
 As far as the connection is concerned, that may well require you to inhibit any file saving until
it is connected, or to ask the user via a dialog whether or not unconnected nodes should be

85

simply discarded when the file is saved. That option might even be something to set up in a
menu - probably one where the top-level option is simply Options. The choice is always yours.
 As far as the coordinates are concerned, any reverse scaling from pixels back into real world
units will inevitably give you a very long set of decimal digits. I have one program where the
user can enforce rounding, say to 0.1m, and another option is simply to stick with those values
for the time being.

7.5 Tool selection

What I described in the previous paragraph is free selection, where all the alternatives are
available using a combination of a particular mouse button press and one or both of the
modifier keys. There is an alternative that enables the use of the particularly common clicks for
multiple purposes. I’ll call that tool selection.
 The way that tool selection works is that you have a (graphical) toolbox, and that it has ‘tools’
that we can imagine at the moment include ‘Select node’, Select link’, Create node’, ‘Create link’,
‘Delete node’ and ‘Delete link’. You could set these up as menu commands, but using a graphical
toolbox would be better. In principle, you click first on the tool, and that activates what happens
with your next click. For example, if you chose ‘Select node’ then your next click would be
identified with the next nearest node on the drawing surface, or if you weren’t close enough
then nothing would happen and you could go on until you actually selected a node.
 A toolbox is a special case of a toolbar that I will describe in two chapters, 9 and 10. You
cannot have a graphical toolbar of any sort until you have drawn or otherwise acquired the
necessary graphical bitmaps to depict the tools although Chapter 9 does describe text toolbars
that do not necessarily need the descriptive graphic. Unfortunately, although they are a good
first step, text toolbars ordinarily just don’t look good enough for a finished application.

7.6 Zooming and panning

Sometimes an on-screen graphic is simply too congested, or the detail is too fine, and the user
needs to zoom in to gain some clarity in what they are viewing. Then, if they want to see
something that is offscreen, the image needs to be panned, or moved side-to-side or up-and-
down, or perhaps even a bit of both. The issues therefore are how to specify how much to zoom
in or out, what area to display, and how to actually code that, with an equal set of problems
relating to the issue of panning. You can get ideas on how to design the interface by seeing how
it is done in other applications, decide which you like, and follow that lead.
 Take, for example, Microsoft Word, which I am using to write this. My document is A4 portrait
format, and when I am zoomed in to see what I have written, I only see part of the height of the
current page. On the right side of the client area, there is a scroll bar (although the scroll bar
disappears when it isn’t being used), and which moves the page up or down. Zooming is done
with a slider control located in a status bar. If the page gets wider than the available drawing
surface then a second scroll bar appears so that the user can also scroll sideways.
 A second paradigm is to use the scroll wheel on the mouse to zoom in or out, and a click-and-
drag to move the image around, although by way of contrast, there is a third paradigm where
the mouse is used to block-select an area which is then zoomed to fit and fill the drawing
surface.
 Once one of these (or anything else, for that matter) is chosen, then the issue becomes one of
how to implement it, with a major issue being whether to have the zoom and pan functions
permanently enabled (as in free selection), or only to enable then following selection of a

86

toolbox button or tool. The second of these options fits best with ClearWin+’s way of working,
especially if the block select approach is chosen.
 When zooming in, you have a choice as to whether or not to scale things defined ab initio in
terms of pixels, such as line thicknesses and font sizes. In the case of line thicknesses, many line
drawings work well with a small range of line thicknesses even when zoomed in. Text heights
are determined by the settings you choose with the subroutines:

SIZE_IN_PIXELS@

SIZE_IN_POINTS@

For some applications it may be worth not scaling the text height, for example where a plethora
of labels obscures what each one is, and zooming in without changing the font size allows you
to read those labels, whereas scaling the fonts would simply enlarge the overlaps.
 When you set the size in points, remember that the so-called logical DPI (dots per inch)
setting is 96 for a standard screen and more for the large fonts settings, but that does not change
when you zoom in. Both of the sizing routines affect both the height and width of characters,
and you need to be careful not to stretch characters too much laterally or the effect is strange
and sometimes ugly.

7.7 Implementing zoom and pan with block selection

Zooming is comparatively easy to implement, simply by changing the scale factor SCALE and
then replotting the whole graphic. Panning is done by again replotting, but after changing the
real-this is world coordinates that correlate with the drawing surface centre. Part of the plot
will overspill the extents of the drawing surface but will not appear on screen as ClearWin+
does all the necessary cropping automatically.
 My personal preference is not to keep block selection available always by specifying it as an
option with the relevant %gr format code, but to enable it when it is required, usually following
a click on a toolbar icon. A second icon on the toolbar is required to return the graphic to being
entirely displayed with in the drawing surface.
 A good toolbar icon for zooming is the magnifying glass, a la Sherlock Holmes, although some
applications use it for an ‘object inspector’ (also relevant to the great detective). Personally, I
think that the object inspector icon should be a silhouette of Holmes in his iconic deerstalker
hat rather than just his magnifying glass. An icon for panning is usually the ‘grabber hand’. On
completion of implementing things from this chapter you will have created an enhanced
graphics callback function for the drawing surface on your programs client area so that you can
zoom in to an area that has been block selected. Initially this action will be linked to a menu
item Zoom, although later it will be relocated to a toolbar icon. The milestone is reached when
your graphic can be zoomed and restored to its original size.

7.8 A complete example

I have given a complete example program for graphical interaction in Appendix E, which draws
a rectangle with some control points that you can select and drag to change the shape. It is
worth typing that program in and running it, then programming some of the additional features
suggested in the Appendix.
 The Appendix example uses some nice cursors that you can download from the internet for
free, although there are plenty of standard cursors available in Windows and ClearWin+ if you
prefer. The use of cursors is covered in the following Chapter.

87

7.9 Selection of an option via a menu that pops up at the cursor position

Sometimes you want a mouse click on an object on the drawing surface to bring up a menu.
There is a specific control for that which is defined with one of the options to %pm, with a callback
that includes the routine DISPLAY_POPUP_MENU@. All the options must be text, and it takes a
right-click in a %gr drawing surface which has FULL_MOUSE_INPUT set in order to to invoke it. If
that sounds complicated – it is.
 The fundamental problems with the approach are manifold. Firstly, the WINIO@ call is
horrendously long and complicated, and secondly, it needs FULL_MOUSE_INPUT. Perhaps thirdly,
it works with a right mouse click, and you might want that for something else. There is a fourth
issue, and that is that all the options are text items. It is certainly not something that I would
recommend in the early stages of program development. On the plus side, those pop-up menus
look great, and conform to the standard current Windows appearance.
 The explanation for pop-up menus is covered in the online help files. You can get this style of
pop-up menus to appear anywhere, although they won’t pop-up over an actual control.
 When I wanted pop-up menus in response to mouse clicks on a drawing surface I wanted
them to respond to a double-click, and also – my fault – wasn’t using FULL_MOUSE_INPUT.
Understandably, they didn’t work. Instead, I developed my own alternative. Here is an example
with a segment of code taken from the graphics callback routine:

 JXP = MIN (IXP+40, IXRES-125) ! so it isn’t off-screen

 JYP = MIN (IYRES-200, IYP+50)

 IGNORE_GMOUSE = 1

 IA=WINIO@('%ww[no_maxminbox,no_caption,no_border,volatile]&')

 IA=WINIO@('%sy[toolwindow]%bg[btnface]&')

 IA=WINIO@('%sp&', JXP, JYP)

 WRITE(DUMMY,'(I2)') NREGION

 IA=WINIO@('%cnSoil No. '//DUMMY//'%bx%dy&', 1.0D0, 0.2D0)

 IA=WINIO@(' %12`~tt[Modify Line]%nl&', IGREYMODI)

 IA=WINIO@(' %~12tt[Remove Zone]%nl&', IGREYREM)

 IA=WINIO@(' %12tt[Add ceiling line]%nl&')

 IA=WINIO@(' %12tt[Split Zone]%nl&')

 IA=WINIO@(' %12tt[Add floor line]%nl&')

 IA=WINIO@(' %12tt[Zone colour]%nl&')

 IA=WINIO@(' %12tt[Properties]%nl&')

 IA=WINIO@(' %12tt[Help]%nl&')

 IA=WINIO@(' %12tt[Deselect Zone]')

 IGNORE_GMOUSE = 0

IXP and IYP are the pixel cords of the mouse, IXRES and IYRES give the size of the screen. JXP
and JYP give the coordinates for the top left corner of the pop-up window. The format codes
%ww and %sy set the style of the window. %bx and %dy give a line under the heading, and two of
the options can be greyed out. IGNORE_GMOUSE is set to 1 while this dialog is displayed just in
case another mouse event is detected – at an early point in the callback routine its value is
checked and if it is set to 1 then there is an immediate return. The layout looks best with a single
space leading in each WINIO@ format string.
 If the user selects any option, then the WINIO@ return code IA is checked and the appropriate
action taken. The results looks like the following in Figure 7.1 (where the red is simply the
background colour from the screen grab). Although this example is composed entirely from %tt
(textual toolbar buttons) format codes, it is possible to use data input boxes and other controls,
although I do caution against too much complexity.

88

 Under Windows XP I used the option CASTS_SHADOW, but as the versions of Windows
progressed the result became less and less pleasing and in the end ClearWin+ no longer
supported the option. VOLATILE means that the pop-up disappears if you move the cursor off it,
and TOOLWINDOW means that the window does not show up in the Windows taskbar. This
approach doesn’t need FULL_MOUSE_INPUT. As these pop-ups are in all respects simply ordinary
dialogs, then all the formatting options are available.

Figure 7.1 Example pop-up menus. (Left) from the code sample, where the red is simply the background colour

from the screen grab, (Right) incorporating %rf boxes (code not given in the text). The use of a BTNFACE
background to the pop-up allows it to show against a white background as it is shown here only partly over a

red-brown coloured area.

7.9 Oh Drat!

If you don’t use FULL_MOUSE_INPUT, then detecting a double-click also detects a left click before
and after it, which means that if your application does have a programmed response to a
double-click then what it does to a single left-click has to be pretty benign. It probably means
that your application has a greater need for right-clicks and so their use for standard ClearWin+
pop-up menus has to be avoided.
 If, on the other hand, you do use FULL_MOUSE_INPUT, your graphics callback routine will get
drowned in mouse events, which means that you have to very early on in the callback filter out
all the mouse events where the mouse pointer hasn’t moved at all (or not by more than a few
pixels) and the button settings haven’t changed. Note that in the previous section I have used
the IGNORE_GMOUSE flag to throw away mouse events I don’t want.
 It also gets quite involved to detect a double-click for yourself, although you can experiment
with the delay between clicks.

89

8 Bitmaps and icons, cursors and other resources

You already used one of ClearWin’s standard icons with the very first dialog for Example_01,
and your own icons will need you, or someone else, to draw them. The word icon is a little
confusing, as any pictorial representation in Windows is an icon, but there is a special image
format called an icon that has the extension .ICO. Most icons for ClearWin+ are not .ICO icons,
but usually just simple bitmaps in one of a variety of formats, including .BMP and .JPG. The .ICO
variant has transparent parts.
 To use any image in your program you need to give it a local name, which you do in a
RESOURCES section or separately-compiled resources file.
 You can also use custom cursors and sound clips.
Fortunately, you can create the bitmaps in the Windows Accessory Paint program, but cursors
and icons cannot be created using Paint, and instead need custom software.

8.1 Resources

When you come to use things like pre-drawn bitmaps and icons, custom cursors and suchlike,
you have got into the realms of defining those resources. There are two ways of defining
resources, and one of them is to put a resources section into one of your Fortran source code
files. The other way is to put all your resources definitions into a separate source code file,
preferably with an extension .RC, and then compile it independently using the Silverfrost
resource compiler, SRC to create an object file with the extension .OBJ, which can be linked to
the rest of the program’s .OBJ files.

The entries in a resources section or file take the following form:

 Local name Resource type File name

an example of an in-line resources section using the card image format (i.e. with the leading 6
space characters) is as follows:

 RESOURCES

 About_BMP bitmap “Help_About_Logo.bmp”

 About_IMG image “Help_About_Logo.bmp”

 Help_icon icon “Main_Help.ico”

 GrabberHand cursor “Hand.cur”

Note that I defined the same bitmap twice with different names and types. To do this double
naming is perfectly legitimate, and allows the same bitmap to be used in different ways. I have
always found it useful to give the file names in quotes, although this isn’t strictly necessary, but
it helps avoid the error if the file name (and path) contains blank characters.

8.2 Drawing bitmaps

Windows comes with an accessory called Paint that is ideal for drawing bitmaps. Recent
versions of Windows have made the default file type when you save an image from Paint as a

90

portable network graphics or .PNG file, but it is a simple matter to save a file in .BMP format by
choosing that type when you save.
 It is possible to import a bitmap into any sort of dialog box, or into a graphics area, with the
appropriate code for a dialog box:

 IW = WINIO@ (‘%bm[Local name]&’)

In this case, the local name would be About_BMP . For a graphics area:

 IW = IMPORT_IMAGE@ (Local name, IX, IY)

and the local name would be About_IMG, with the pixel coordinates to the top lefthand corner
of the bitmap set by (IX, IY).
 One important thing about placing an image on a graphic is that you have to be careful not to
obscure important parts of the graphic, and another thing is to possibly have more than one
version of the image to cope with low and high resolution screens. You will definitely need a
larger version of an image if you are going to place it on a hardcopy output because even the
lowest resolution printers are much higher resolution than typical monitor screens. I will come
to hardcopy output in due course, but this is an important thing to remember when drawing
certain types of image. IMPORT_IMAGE@ will also manage other types of graphic, for example JPG,
PNG, GIF and PCX. As GIF images can be animated, importing one will animate on your screen.
All you have to do is to include the file in your RESOURCES section declared as an IMAGE.
 There are also several IMPORT_ functions described in the online help for importing specific
files, i.e. those that haven’t been listed in a RESOURCES section. If you use those routines, be
careful to check the return code to see if the import has been successful.
 An interesting feature of a bitmap when used in a dialog box is that you can make it clickable.
To do so you need to put a qualifier into the %bm format code and provide a callback function
that is executed when the bitmap is clicked. The requisite modifier is ^, which as in other
contexts means that a callback is necessary and has been provided.

8.3 Back to the About box with a bitmap

A really good place to put a bitmap is in your program’s About box. Here’s one I designed for a
program I wrote to help students on a topographic survey residential field course:

Figure 8.1 A refined About box.

I know that I used ‘OK’ instead of ‘Dismiss’, but you should also look at the icon in the button.
The point is that this program is used once per year, and every possible help has to be given to
its users, for example staff who are new to supervising that particular course. The About box
has a bitmap, in this case a bit of a screen grab from the Internet. The program name is SCAMPS,

91

which is an acronym of a full description of what the program is about and coincidentally is the
name of a cartoon dog. This particular program is tailored to one set of users’ needs and is
certainly never distributed, as it is not a commercial product. The use of part of a graphic
downloaded from the Internet could therefore be seen as ‘fair use’, but I would certainly not
ever do such a thing with a program intended for widespread distribution or that was intended
to be a commercial product. In any case I had to clean up the image, and added my initials into
the dog’s collar!

Figure 8.2 An About box with a critical mistake ...

We actually learn far more from our mistakes than from our successes, and so here is an
example About box that does not include a bitmap.
 What is wrong with this particular one? Several things. One of them is that use of ‘OK’, and
another is the fact that the button is centred which is not the current style. However, the worst
mistake appears on the caption bar where a ‘minimise icon’ has been used. The minimise icon
should only be used on the master window, because it is intended to be shown on the taskbar
when the application has been minimised, and dialog boxes such as this one which inhibit the
program until they are dismissed should never be minimised to the taskbar. You might ask how
could you minimise it, because at the top right on the taskbar there is only a close box. What
you are perhaps missing is that the minimise icon is dual purpose and is always provided so
that users gain access to this system menu, a hangover in part from earlier versions of Windows
but which contains within itself options to minimise or maximise the particular window. If you
maximise an About box then the layout will change!
 Therefore, the rule has to be that minimise and maximise icons are for the master window
only, and therefore that an icon on the caption bar cannot be allowed as it is an entry into the
system menu where minimise and maximise lurk!

8.4 Using thematic colours

Thematic colours make your application stand out, but they can have undesirable side effects.
For example, it is possible to set the background colour in any dialog box to whatever you want,
or even to fill the background with bitmap images. At first, it may seem a good idea to colour
code the dialogs. In practice, it makes your entire application seem cartoonish and childlike. It
may also provide a set of colours that clash with the theme of a future update to the whole
Windows system and make your application anything from clownish through irritating to being
downright non-functional . In fact anything that is intentionally non-standard has the potential
to do any one of these things. For example, my favourite application CorelDRAW! has a version
X5 that uses white text for the menu items. The current version of Windows as I write this has
a white background for the menu bar and therefore the top-level menu commands are invisible.

92

Well, it was a good way of prising more money out of me for a later version that works very
little better and took me a very long time to get accustomed to.
 My advice is to stick as far as possible to the defaults because of the possible side effects of
going your own way. One of those side effects is to make various Windows visual clues far less
evident, so that if you choose for example a grey background to your dialogs, you make it far
more difficult to see things that have been disabled or ‘greyed out’.
 A more proper use of thematic colours is to use them in a logo and in the About box. You can
also use those colours in a compiled help file. Finally, it may be a good idea to use thematic
colours in a toolbar. Here, for example, is the toolbar from my StationMaster program, where
the thematic colours of the program are used for toolbar icons:

Figure 8.3 A toolbar produced with %ib where there is colour coordination between the icons.

I’ve shown the toolbar and the caption and menu bars. The minimise icon is a survey target. I
suppose that a more complete use of thematic colours might well have been to use red instead
of blue on the toolbar icons. One lives and learns. However, as producing this software was
effectively a labour of love, it might have been a deliberate choice of mine a decade or more ago
not to put the effort in to recolour the toolbar icons. This particular application does not use
data files but instead performs simple calculations using angles and distances to locate a
particular survey point. The File menu is therefore limited to a print option and the graphics
client area (drawing surface) shows the respective coordinates, angles, distances on a gridded
plan. Nevertheless, there is a complete online help file and also inevitably the About box
although as we have seen immediately above that About box is far from sophisticated.
 There is a set of thematic colours linked to Windows. A list of the names for these colours is
given at item 108 in CWPLUS.ENH, the ‘enhancements’ file for ClearWin+. If you use these colours,
your application will change colours in a subtle way if you run it in different versions of
Windows, but it will always look highly compatible and fit in well with the theme. Using these
colours is something that I recommend highly.

8.5 Icons

The standard Windows application Paint.exe is capable of saving its images in a variety of
formats but the icon format is not one of those. Instead, if you intend to draw icons, then you
must invest in an icon editor, or download one of the many freeware or public domain icon
editors. To be frank there is not much difference between a bitmap and an icon except that the
latter may have transparent areas and so the image does not appear necessarily to be bounded
by a rectangle. Your choice of icon editor will bring with it a bit of a steep learning curve, with
which I can’t really help. Out of interest, I have a registered version of IcoFX for my work.
 For an application that is intended for your own personal use, then it is possible to do screen
captures of icons and bitmaps from commercial applications, but to do so is absolutely
forbidden for use in applications that may be distributed widely or commercially because of
copyright issues. That does not prevent you from looking at them and getting ideas. For
example, the use of an icon representing 3.5 inch floppy disk to represent file saving is not a
copyrighted idea although its implementation may well be. You may well wish to draw your
own. Something similar applies to an icon for a printer. In both cases the most recognisable

93

format for the icon is of items that are obsolete and probably your computer does not have a
floppy disk drive and your printer does not look anything like the printer in the icon!
 You will certainly see very many different interpretations for an icon representing undo and
its mate, representing redo. Once again, close inspection of what other people have done and
using their efforts as inspiration is probably the best way to go - but only if you have a certain
amount of artistic ability. If you are no artist or clumsy with the relevant application, then you
may well find it much more convenient to download some free icons from the Internet or pay
for some commercial icons. The downside of this is that what icons are on offer are generally
not what you require. Paying an icon artist to draw them for you is usually an expensive affair.
 You will notice in the credits for SCAMPS in the About box reproduced as Figure 8.1 that there
is a credit for the use of icons in the ’Fugue set’ released into the public domain by Yusuke
Kamiyamane and Smooth set cursors by Vlastimil Milér. In that program I did not use many of
those icons, but I certainly used the tick and cross icons which I incorporated into some of the
buttons. You may find yourself doing something similar, and if you do then I think it is both
right and proper for you to give some credit to the original artist as I have done in the About
box that probably almost nobody will ever read for my program SCAMPS.
 Icons, incidentally, are also clickable in a dialog if you set up the format code %bm or %ic with
the appropriate ^ qualifier and a callback function.
 Vlastimil Milér has a website: http://www.rw-designer.com/software where he maintains all
sorts of useful free software, including cursor and icon editors. The ‘rw’ stands for ‘real world’.

8.6 Graphic images in a dialog box

If your dialog has a picture, and you know what picture to include when you open the dialog,
then you can use a pre-drawn image, perhaps a bitmap drawn with MS Paint or some other
drawing app, which is listed in your RESOURCES section and incorporated with %bm. The
approach is similar if you want to incorporate your own icon, using %ic, a GIF file, using %gi,
or any one of the acceptable image formats using %im (PNG, JPG, BMP or PCX).
 In order to make the image file you may need to measure the size of some feature in the dialog
and prepare the image for that size. I use Ruler by George! for my measurements. On screen
bitmaps are low resolution, and won’t make your EXE file too big.
 If your dialog needs a picture, and that picture changes according to selections made by the
user, the method is to include a %gr drawing surface of the right size in the right place. You then
have the choice of actually drawing the contents, using the ClearWin+ graphics primitives, or of
including pre-drawn images. A variety of image formats can be imported using one of the
standard routines that is listed in the Library Reference, namely: IMPORT_IMAGE@.
 Once again, those images would need to be listed in the RESOURCES section and be referred to
by its local name. As the image file is loaded into the %gr drawing surface with offsets, it is
possible to use only one image file and load it with different offsets according to relevance,
which may be a preferred route to simplify redrawing the images if some future change to the
Windows ‘look and feel’ makes it necessary to change colours or backgrounds etc. Note that if
you do use several drawing surfaces in your application you do need a User ID for each one, and
remember to switch to the correct one each time before drawing.
 In the same way as using a standard icon (with %si) makes information and warning dialogs
more relevant, if you use an icon in a dialog that (say) matches with the image used in a toolbar,
you will make the user more familiar with how the dialog and toolbar button relate to each
other. It is possible to also use icons in the menu system using some of the enhanced menu
options, but the icons for that have to be a lot smaller than is useful in a toolbar or dialog, and
thus need many more things drawn for RESOURCES.

http://www.rw-designer.com/software

94

9 Toolbars

A feature of many Windows applications is a toolbar (or toolbox) consisting of a set of clickable
icons. These icons are in effect action buttons that duplicate the commonest functions to be
found within the drop-down menu system. Putting the actions on toolbar buttons speeds up the
selection which can be very important in graphical interaction but is probably a bit of a luxury
if your program does not have any of that graphical interaction. In ClearWin+ there are basically
three sets of format codes for generating toolbars or toolboxes, but four ways of doing the job.
Toolbars in ClearWin+ are fixed in position, but toolboxes are dialogs consisting only of toolbar
buttons and are movable.
 ClearWin’s toolbar facilities may be displayed typically at the head of a main window client
area or down the left-hand side, although programmer imagination can be invoked to put action
toolbar buttons within a status bar or indeed anywhere in a window. The top and left positions
are best because when a window is resized these are the locations that stay put. The three
ClearWin-specific options are:

• a textual toolbar, generated with %tt or sometimes %bb controls
• the original toolbar system generated with %tb controls
• a later developed image bar system generated with %ib controls

Generally speaking, textual toolbars are the easiest to code, followed by the image bar system
and the hardest is the original toolbar system. The reason lies to a large extent with the need to
draw bitmap icons, because with the textual toolbars, icons are optional, and with the image
bar system only one icon is required, but with the original toolbar system you may need three
or four icons for every button. The icons themselves are input as BITMAP (.BMP), and not as ICON
(.ICO).
 A fourth option is what I call a do-it-yourself option, which is to put icons on a %gr drawing
surface and to respond appropriately if the user clicks on them. You can dress up the drawing
surface (or just part of it) so that it looks like a toolbar as well as functions like one.
 A toolbar that takes up the whole of an independently-movable window is a toolbox.

9.1 Textual toolbars

Textual toolbars are essentially a row of buttons, and as well as the %tt and %bb format codes a
textual toolbar might even be generated using %bt format codes. The example given in the
compiled help for FTN95 shows three textual toolbar buttons which I have altered to include
callback functions (which would need to be declared EXTERNAL in the usual way):

 IW = WINIO@ ('%^tt[Compile]&’, KB_COMPILE)

 IW = WINIO@ (‘%^tt[Link]&’, KB_LINK)

 IW = WINIO@ (‘%^tt[Run]&', KB_RUN)

 IW = WINIO@ ('%bx&', 0.0D0)

and used like this where the action is difficult to identify with an icon but very clear from a
single short word then the textual toolbar might be very effective. They work very nicely with
no space in between unless of course they are to be separated into logical groups, in which case
a single space character is an adequate separator. If any of the options needs to be greyed out,

95

then the usual grave modifier and a grey code need to be supplied. For example, using the
compile-link-run sequence in the above example, Link should only become active if Compile
completed successfully, with Run only becoming active if in turn, Link had no errors. Whether
or not the earlier buttons become inactive when later ones are activated is dependent on
program design. The relevant changes to the grey states are done in the callback functions.
 A nice refinement to do with toolbars is to generate a line across the client area underneath
the toolbar which is done using the %bx code, including an offset as a fraction of a grid cell height.
For a textual toolbar, an offset of zero is usually effective (as in the example).
 A downside of the textual toolbar approach is that it does not look very professional when
the buttons are stacked in a column, nor when there is a large number of buttons. A further
downside is when the actions cannot be expressed very simply with short words. The most
effective appearance is given when the description on the button does not take up its entire
width.
 Toolbar buttons defined with %tt are less high than those generated with %bt, and if the style
pleases you then they can form an effective alternative in any dialog, but if you use them in one
place then for a consistent style you do need to use them everywhere. Unlike the %bt, where the
button width may be controlled quite finely with a multiplier, %tt buttons come with larger
steps between the button sizes.
 I recommend use of the very simplest form of textual toolbar early in program development
while the callback functions are being developed because the %tt buttons are so easy to
generate and can act as placeholders for more elegant designs to be provided at a later stage of
program development when things are definitely working, and attention is more directed
towards aesthetics. On the other hand, there are very simple programs for which the textual
toolbar remains perfectly adequate.
 As you can imagine, with grey codes and callbacks, the format strings in the individual WINIO@
calls can get complicated, and so I continue to stress that for ease of reading (and debugging)
your code it is better to keep to one button, one statement.

9.2 Textual toolbars using the revised button format (%bb)

As well as the %bt button format, an alternative button is provided in ClearWin+ with the %bb
format. Buttons using %bt may have icons as well as text, but the options in the %bb format are
more sophisticated. One of those options associated with %bb is to retain colour in the icon even
when the button itself is greyed out and disabled. The mechanism for automatically converting
a coloured icon into grey if the option to retain colour is not taken up can produce an ugly or
unrecognisable icon in the greyed-out state. There are techniques other than retaining the
colour in the icon to improve the look of the greyed-out variant, and the rules are discussed
below in connection with the image bar %ib approach which uses the same algorithm.
 An example of the code for the first button in the main %bb toolbar is:

 IA = WINIO@('%fn[Segoe UI]%ts&', 0.96D0)

 IA = WINIO@('%th[delay,ms_style]&', iTTH, 500)

 IA = WINIO@(' %^~?bb[SELECT//Select]'//

 & '[Select from 30 possible traverses]%lc&',

 & MY_Traverse_Grey(1), KB_Select_Trav_FN, iHWTB(1))

96

Figure 9.1 Toolbars for a particular application. The horizontal toolbar uses %bb and the vertical bar %ib. The
%bb option to keep the icons coloured even when the item is greyed-out has been chosen. The tooltip for the top

icon in the vertical toolbox is displayed.

The first two statements select the font for the buttons and its size, then set up the ‘tooltips
help’ so that the help appears after a delay of 500 milliseconds. iTTH is a control because a
program option is to switch off the help pop-ups.
 In the %bb format code, ? says that it needs a help string, ^ that it has a callback function, and
~ that the icon is not greyed when the button is. The local name of the icon is SELECT as defined
in RESOURCES. The button’s handle is also obtained using %lc and stored in iHWTB(1). The initial
space character in the format string is to stop the first button being too close to the window
frame. The icon is 16x16 pixels.
 Two disadvantages of using %bb for a toolbar are that the icons are very small, and they need
to be in the .ICO format. Windows Paint will import .ICO files but will not save in that format,
so that you need a different third-party editor or to get icons from the Internet. It can be really
rather difficult to make the icons reflect the function of the button and they act more as an aide
memoir to the text on the button rather than indicating its function without text as in the case
of a normal toolbar icon. In this respect a green tick is good on an Accept button and a red cross
works well on a Cancel button,

9.3 Do-it-yourself toolbars

You don’t really have to use any of the ClearWin+ toolbar options to generate what is effectively
a toolbar because if your client area is a drawing surface you can of course put your icons on
that with an import image command in response to detecting the mouse cursor position using
full_mouse_input. Indeed, there are benefits to doing so because you cannot only respond to
clicks, but you can respond to a mouseover event when the mouse is simply hovering over the
icon. Responding to mouseover events is only implemented within %ib at present, and this
basically means that mouseover events can only be responded to within toolbars that do not
look like the present incarnation of Windows.
 A further advantage of a do it yourself (DIY) toolbar implemented on a drawing surface is that
intrinsically it is movable whereas once generated all the other types of ClearWin+ toolbars of
fixed in their position and can only be moved if the window is closed and redrawn.
 The advantage of the DIY toolbar is somewhat negated by the additional complexity created
in the graphics callback to that particular drawing surface, and one solution is to basically make
up the client area in a master window by two or perhaps even more %gr drawing surfaces, with
one or more reserved for the do-it-yourself toolbars and not responding to any other sorts of
events. What is more, it is probable that any sort of tool help will look non-standard in a DIY

97

toolbar, but a user is unlikely to be critical if the tool help is particularly helpful and not limited
in the way that it sometimes is using the standard ClearWin+ for Microsoft approaches. The
number of icons (i.e. bitmaps) required for a do it yourself toolbar depends on the total
functionality, but a complete set would include a normal icon, a mouseover icon, a permanently
selected icon, a temporarily selected icon for use during a click and release sequence, and a
greyed out icon. The greyed-out icon could be rather more complicated than allowed for with
%ib variant toolbars, and thus retain more in terms of recognisability.
 The method of programming a DIY toolbar is to use the IMPORT_IMAGE@ function to display
the relevant bitmap, then using full_mouse_input, you can check in the graphics callback if the
mouse pointer is over that image or if a click has been begun in that area. If the mouse pointer
hovers, then another IMPORT_IMAGE@ can change the bitmap (by overwriting) to the mouseover
state, if a click is in progress because a button on the mouse is depressed, then the
IMPORT_IMAGE@ has to be changed to the ‘down’ state, and so on. You would need at least 2
bitmaps for ‘up’ and ‘down’ respectively, with a third if the ‘tool’ can be greyed-out. Four
bitmaps are needed if there is a permanently selected state, and a fifth if the icon responds to
mouseover.
 When processing the mouse coordinates, it is easy to see if the pointer has moved off the
toolbar into the body of the drawing surface, but much harder if the bitmaps are hard up against
an edge. The problem can be avoided if instead of putting the homemade toolbar up against an
edge it is offset by 10 or 20 pixels.

9.4 Success and failure – an example to treat those two impostors just the same

8

Under the right conditions, and certainly in early stages of developing a program, textual
toolbars can be very helpful, but generally speaking they do not look as good as ‘proper’
toolbars. The tooltip help is rather superfluous when the buttons already have text. In the
example of Figure 9.1 they work because the likely user does not need anything better and
appreciates having the text and the icon.
 I wrote an application that used DIY icons for a Windows tablet computer. This particular
application was to duplicate the record-keeping for a student surveyor doing a levelling
exercise. For those of you for whom this is unfamiliar it is what you sometimes see on a building
site where the surveyor is looking through a telescope on a tripod at a 3 or 5 m long staff held
by an assistant. The surveyor reads numbers off the staff and enters them into a paper
notebook. The exercise requires a great deal of mental arithmetic with quite small numbers and
finally a check that no errors had been made. Students often fail at the mental arithmetic, and
the intention of the application was to remove the tiresome delays that the inability of today’s
students to do the mental arithmetic was causing. The application was presented on the tablet
screen without a caption or any sort of frame using %ww[super_maximise].
 The icons, which appear down the right-hand side of the touch sensitive screen were drawn
at 64x64 pixels so they could be selected with the fingertip press and all the data entry into
dialog boxes was handled with the pop-up on-screen number pad or keyboard, which required
no programming effort because it is built in part of Windows when in tablet mode.
 Rather unfortunately, given the effort that I put in, the application proved to be a resounding
failure! Basically, even Microsoft have discovered that Windows is not particularly well suited
to the tablet format, and the automatic rotation of the screen when the tablet is held in different
positions limits some of the design elements that can be employed.

8 Rudyard Kipling’s ‘If’ – if you hadn’t already guessed – or knew already

98

Figure 9.2 The level book application.

The basic problem, however, was not with the application but compared to a paper notebook
and pencil that can be folded up and stuck in the surveyor’s pocket thus freeing both hands to
fiddle with the instrument, the Windows tablet being a read-write device and also slightly too
big for a pocket could not be slipped into a pocket without corrupting the input. I had made the
mistake of thinking that the tablet was equivalent to my Kindle e-reader where I can just fold
the case and put it away.
 Another disadvantage reflected an issue I had once had with a colleague who remonstrated
with students who gave up in the rain, saying “do you think they can’t build motorways in the
rain?” As it happened, keeping modern surveying equipment out in rain will inevitably lead to
it malfunctioning and needing costly repairs in which case presumably motorway constructors
just buy or lease another, but Universities take a long time to acquire costly instruments and
certainly not on the timescale of a field course. The tablet computer is also somewhat
susceptible to rain in a way that a proper survey notebook and pencil are not, as the paper in
the pages can be written on when wet!

9.5 Take it easy

9

A recent development to ClearWin+ (from version 8.20) is to enable you to draw a complete
toolbar with one image file, and several sample image files are included with the FTN95
package. The system is quite complex as it deals with all the options in one command. It’s not
something I have experience with, and as you develop a toolbar only once per application, it’s
something to seriously consider if you are programming a series of applications with a need for
consistent toolbar design.

9 The Eagles this time … (on the Hotel California album)

99

10 Proper Toolbars, using %tb or %ib

The mnemonics for the format codes %tb and %ib are derived from respectively toolbar and
image bar. The helpfile declares %ib to be a replacement for %tb, but they are quite definitely
not, as versions of Windows from 8 onwards have standard toolbar functionality and
appearance quite different from that presented by %ib. They are also programmed in rather
different ways.
 You should not try to duplicate every single menu command on a system of toolbars, but to
select the ones most likely to be used and to provide a simple and rapid means of access to those
commands. Toolbars and image bars (toolbars generically) can be horizontal or vertical, but
they are (in ClearWin) fixed in position at the top or left-hand side of the screen. Where the
client area is a graphics drawing surface and has a pivot so it can be resized the upper and left
positions keep the toolbars available until the last minute as the master window is shrunk.
 The big advantage of the image bar is that it only needs one bitmap for each button whereas
the toolbar requires several – the corresponding advantage of the original toolbar is that it
looks the way you want it to.

10.1 General design issues

Before you embark on programming toolbars of any sort you should be aware that they are
very hard work, generally, because they need icons and those icons must be drawn. It is of
course possible to use a toolbar made out of text buttons, but even anything but the simplest
toolbar even one largely made out of text buttons can sometimes have associated bitmaps.
 As an example, one of my applications has 2 toolbars, with a total of 48 buttons (including the
one that is a separator). If you had (for ease of multiplication) 4 icons for each of the four states
for %tb buttons, that represents 192 icons to draw, and that is in addition to any other icons
used in the program. That particular application of mine has some icons that are always
available and never greyed out so they only needed 3 bitmaps to be drawn, but, to make matters
worse, the user of that particular program can select between two %tb type toolbars, and three
%ib toolbars, amounting to a lot of drawing exercises.
 If you in addition multiply the number of icons up by the need to have different sized icons
for different screen resolutions, then the number of icons to be drawn becomes a really
daunting job, made worse if you really do not have any artistic ability or skill in using a Paint
type program. Fortunately, both types of toolbar require .BMP files and not .ICO, so that you
can use the MS Windows Paint program.

10.2 Icon size

The sizes that you select for your toolbar icons will depend on a variety of factors including
whether or not you intend that your application be usable on a touchscreen.
 Taking first the %tb icons, these need to be drawn at about 24x24 or bigger for typical 96 DPI
setting screens of small to medium size, but 24 x 24 is far too small to allow an accurate finger
selection. If touchscreen access is important then it is possible to consider the use of a rubber
tipped stylus as a substitute for a finger press, but if a finger press must be catered for then you
need much bigger icon, say 64 x 64. When really big icons are used, they may take over a lot of
screen space and there is certainly a limit to how many may be drawn in a vertical toolbar.

100

10.3 Icon design for %tb

With a %tb toolbar, you are responsible for the design as to how a button looks when it is being
pressed. For many versions of Windows, the method was to pretend that when the button was
being pressed it appeared as though it went downwards. This effect could be achieved with the
pixels around the edge of the bitmap. For example, if the top and left edges are drawn with a
light colour, and the bottom and righthand edges are drawn with the dark colour, it looks like
the button is raised. If the reverse colouring is applied, that is to be darker on the top and
lefthand edges and a lighter on the bottom and righthand, it then looks as though the button is
depressed. Variations on this very simple technique may be used to signify a button that has
been selected. The greyed state button should not then look as though it is selected.
 It may be necessary as well to make the image on the icon move down and to the right by one
pixel when the button is depressed if that down-up is to be simulated.
 Windows 8 and 10 introduced flat buttons, where the visual effects of up-and-down etc. are
replaced by colour change.
 All button icons do not have images that run right to the edge of the relevant bitmap, and so
must fit in a smaller area. For example, in a 16 x 16 bitmap, the graphic itself cannot be bigger
than 14 x 14 and may even be several pixels smaller, say 12 x 12 or 10 x 10 when there are 2 or
3 pixels needed for effects on every side. It is very challenging then to draw something that is
clear and which also signifies the action that that particular toolbar button represents.
 My advice is not to reinvent the wheel, but wherever possible use iconography that has
become established through other programs. An example of this is where the File/Save action
is represented by an image of a 3.5” floppy disk. Those floppy disks are now almost museum
pieces, and the drives are very rarely fitted to desktop or laptop PCs, but the icon is fixed in the
minds of users by the fact that it has been used so often. If you look at really old Windows
software, you might even find a 5¼” floppy disk represented, but that would be rare because at
the time Windows was being introduced the 3½” drive was displacing the larger type of
removable media. On such older and obsolete software, you might even find an icon for hard
disk but even today the floppy disk icon is taken to mean that as well.
 Similarly, the icon for a printer looks like the one in Figure 10.1, and this may be regardless
of whether or not the user’s printer actually looks like that! (Note that in the Windows 10 Paint
icons, the printer is drawn as a 3D or isometric view. Now that is really challenging!)
 Some icons are somewhat ambiguous, because a magnifying glass icon is used for both
zooming in and also for searching, the latter being a nod in the direction of the famous Sherlock
Holmes who used a magnifying glass to examine clues. Another ambiguous icon is the set of
three intermeshed cogwheels that sometimes represent settings but other times are a
command button to launch into a protracted analysis. Paint (again) uses a tick to denote
settings, whereas it is more usually applied in the sense of confirming a choice in a dialog.
Microsoft never conforms to its own recommendations.

10.4 Drawing a set of toolbar buttons for %tb.

I will suppose that you wish to draw the bitmaps with the Windows Paint utility. I will run
through the steps to draw a Printer icon, and leave the rest to you.
 Open the Paint application and in the File menu select New. Again, in the File menu select
Properties and change the size of the icon to 24 x 24 then, zoom in using the slider bar near the
lower right corner of the application so that the icon is as big as you can make it. I am going to
draw a printer icon and put it on a light background. Choose the colour from the colour picker
and make sure that the colour is selected for colour number 1. Using the paint bucket icon in
the tool’s toolbar, fill the entire area with that colour. Then select black, choose first the rounded

101

rectangle shape and then the thinnest line. Draw the body of the printer using this shape, and
then selecting the true rectangle, draw the paper protruding from the printer.
 Then, colour the printer typical office machine cream and the paper white. Add a couple of
buttons on the front of the printer with black pixels and then basically you’re done.
 If you want a 3D effect, then colour the top row and lefthand row dark and the right-hand row
and bottom row of pixels white or at least a lighter colour. If you want to finesse the job, make
the next row in from the edges an intermediate colour to the main body of the icon. If you take
the icon and copy it, but reverse the colour pattern for the borders, you have generated two of
the buttons: one for up and one for down. You can easily produce a selected icon by colouring
the background of the icon in a different shade or even putting a red tick mark over the printer
somewhere. In that way you can generate your four %tb icons.
 Should you decide on a 3D-looking icon, then it is a matter of producing intermediate shades
around the black edges of the printer. You might even add little refinements like as well as using
black dots of buttons, use a little green light diode that swaps to red in a different icon. If you
offset the icon slightly to the left and up you may even be able to produce a drop shadow effect.
You might find it desirable to move the icon image down and to the right by one pixel each
between the up and down variants. Finally, you might have to produce a greyscale version of
the icon for when it is greyed out and that is simply a matter of replacing all the colours in the
main icon using shades of grey.
 A modern looking variant does not have the 3D effect but instead uses different background
colours or other effects.

10.5 Programming %tb

Here is an example from a working program of mine, linked to a printer icon:

 KODE_TOOL(24) = 1

 I = WINIO@ ('%^~?tb@&','PRINTER_ON',

 & 'PRINTER_ON',

 & 'PRINTER_DOWN',

 & 'PRINTER_GREY',

 & KODE_TOOL(24), MGR(8), KB_PRINTER_FN,

 & ' Summons the printing dialog ')

This particular button has 3 .BMP bitmaps, referenced in the RESOURCES, and named
appropriately. The callback function is named KB_PRINTER_FN, and is referenced in an EXTERNAL
statement. It just so happens that the Grey code is the 8th element in an array MGR, and the initial
setting is given by the value of KODE_TOOL’s 24th array element (the same grey code is used for
multiple toolbar buttons, but the status-setting is unique for each one). Only three icons are
required because the printer cannot be permanently on, but it does need a greyed-out version
because it may not be available when the program starts up or when there is nothing to print.
 I found, by trial and error, that the help string looked better starting and finishing with a space
character.

10.6 Exercise with %tb

I suggest that you will only make progress with toolbars by giving it a try. You could do worse
than to take the above example, replacing KODE_TOOL and MGR with single variables and wrap
the whole thing in a simple program with a single, do nothing, callback. You will, however, need
three bitmaps with a printer icon. Initially, you might draw three icons where the up and down
variants are just a different colour, and the grey variant is simply replaced by two-tone grey.

102

Figure 10. 1 Up, down and grey simple icons. Draw them in Paint with 24x24 pixel size.

Try your simple program out and see the effect of clicking on the button. The next step is to
draw the icons with a 3D effect as shown in figure 10. 2, just to see how the up-down effect
works.
 Following that, I suggest adding a button to change the grey code and then see what the icon
looks like. Decide for yourself whether the greyed-out state looks better with the 3D effect. You
might try adding a fourth icon to see how the icon clicks on and off.
 As a final experiment, either duplicate the whole button several times to make a toolbar, or
draw some more icons so that the toolbar buttons are in a row and are all different. The choice
is yours.

Figure 10.2 Raised and depressed effects (grey icon on the right has been drawn flat).

After that, what the icons look like and how they function is a matter of your experimentation.
Three-dimensional effects are produced by the appropriate shading, with elements looking
raised if they are lighter on the top and left and darker on the bottom and right or depressed if
the shading is the other way round.

10.6 Programming imagebars with %ib

Imagebar buttons come in 3 styles:

• Flat
• Coloured
• Standard

The following code snippet illustrates the use of %ib to create a 4-element image bar, with the
comparative simplicity of the format relative to %tb with its multiplicity of icons enabling for
toolbar buttons to be put in the same WINIO@ function call without it becoming overly
complicated, although my advice to limit the amount of data in any such call still applies. The
first part of the code examines what version of Windows is running, because the earlier versions
do not offer the ms_style of tooltip. The delay is set to 300 milliseconds.
In the second block of code we have the actual toolbar creation, with one of the options for the
format code being spliced in with the concatenation operator //, which allows you to select

103

whichever toolbar style pleases you. Concatenation is also done with the various parts of the
format string to enable the use of continuation lines. The string that is inserted (INS) is one of
the three options: two apostrophes ‘’ (i.e. nothing), ‘coloured’ or ‘flat’, and the help strings are
put in in order within square brackets.

 CALL GET_OS_VER@ (ID_Platform, Major, Minor)

 IF (Major .LE. 5) THEN ! i.e. XP or earlier

 IA = WINIO@('%th[delay] &', 1, 300)

 ELSE

 IA = WINIO@('%th[delay,ms_style] &', 1, 300)

 ENDIF

 IA = WINIO@('%?4.1ib[' //INS// ']' //

 & '[Zoom in or out]'//

 & '[Screenshot graphics and print]'//

 & '[Print results]’//

 & ‘[Launch help manual]&',

 & 'ZOOM', IMBAR(1), KB_Magnifier_FN,

 & 'PICTURE', IMBAR(2), KB_Bitmap_FN,

 & 'PRINTER', IMBAR(3), KB_Printer_FN,

 & 'HELP', IMBAR(4), KB_Help_FN)

The initial settings of the array variables IMBAR(1) to (4) reflect the status of the toolbar icon.
To incorporate this code into a test example, you will also need 4 bitmaps, which I have
sketched in a simple form in Figure 10.3 below.

10.7 Drawing the bitmaps for imagebar buttons

The great advantage of toolbars created using %ib is that you only need one bitmap that
ClearWin+ itself transforms into the different states. It is intended by design that these buttons
sit on a grey background, typically with the RGB values (192, 192, 192). Using Microsoft Paint
therefore, a good practice would be to define a square area (although in principle any rectangle
will do) and selecting a custom colour which you define as the grey, fill the whole area. Then on
top draw your button icon. You can use whatever colours you like that would show up against
the background. I have sketched below four icons that you might draw in the Windows Paint
application to try out the code that I have given.

?

Figure 10.3 Various icons for %ib ‘tools’.

With 4 bitmaps named in your RESOURCES segment, you should be able to program the buttons,
and if you have done the imagebar WINIO@ calls 3 times with different INS strings you will see
the three styles. As an experiment you should make sure that you examine the greyed-out
versions.
 One of the fundamental problems is that when ClearWin+ generates a ‘greyed-out’ version of
the button because it is inactive, then all that you have drawn will be turned into the same dark
grey colour. It probably does not matter if the icon is spindly like the open scissors that typically

mailto:IA%20=%20WINIO@('%25?4.1ib

104

signify ‘Cut’, or the Help icon from Figure 10.3, but many of the icons will turn into dark grey
blobs, and it is unlikely (highly unlikely in my view) that you will be satisfied by the
unrecognisable nature of some of your icons in the greyed-out state.
The solution to this problem is to fill any substantial areas in the icon with a hatched pattern in
which your chosen colour and the (192,192,192) background grey pixels alternate. Then, when
ClearWin+ generates the greyed-out version of the icon, the hatching still shows. The effect of
hatching with the light grey is to make the colours less saturated and more of a pastel nature,
but that is unavoidable. The following illustration shows the effect:

Figure 10.4 Effect of hatching to retain the recognisability of toolbar icons in their greyed-out state.

10.10 Design for %ib and %bb icons

The total number of icons that need to be drawn for %ib is so much smaller than for %tb, and
this may be a very real incentive to use %ib instead of %tb. At the time of writing, it was possible
to add text to %ib buttons, but only underneath and not alongside in line with common
contemporary usage. Moreover, the fact that only one bitmap needs to be specified means that
it has to be drawn in a particular way in order that the greyed-out state is still recognisable.
 Something that is very important is to stick to a particular theme in a given toolbar so that
the icons react in a common way.

10.11 What do I want in a toolbar?

The next very important issue to answer is what functionality do you really want in a toolbar?
Some applications probably only need a toolbar that reflects the contents of the File menu, and
then only a subset, as in for example Open, New and Save, with Print actually unconnected with
the other icons and featuring to the right of the toolbar near Help icon.
 Other applications will need many more icons. Just as in the case of submenu items that are
divided by horizontal line separators, toolbar icons also need separators: vertical in the case of
horizontal toolbars and vice versa. Unlike in the menu case you will have to draw the separators
yourself. I have found that a space character works pretty well with image bar style toolbars,
but a drawn separator is required with the %tb format. Rather bizarrely, the separator needs to
be permanently selected and therefore not responding if it is clicked on, but also to need a help
string that is never invoked!
 You might find that parts of some icons are almost reusable, as in for example the sketched
icons in Figure 10.5 below.

Figure 10.5 Icons for the toolbox in the network application. The one on the left is the icon for Select Link, and
the one on the middle for Delete Link. The one on the right is for Add Link. If you didn’t feel that there were

enough pixels to draw the pencil, a plus sign + might do the trick.

105

10.12 Some examples from my own work - %ib

I have cut-and-pasted three versions of the same toolbar drawn with %ib icons. The bottom
version uses %ib[flat], the middle version uses %ib[coloured] and the topmost version uses
no qualifier. At program start-up, most of the icons are greyed-out. You can see how the
chequerboard effect allows us to see the internal shapes of %ib icons. Running from left to right
starts with four icons from the File menu: New, Open, Save and Close, with Save and Close greyed
out initially. The rest of the icons relate to the functionality of the program until we come to the
last group of four, with the ability to zoom, to take a snapshot of what is on the drawing surface,
to launch the print menu or finally the help file.
 Once there is a datafile open, the second row of icons in general is selectable, or deselectable.
There follows a group of analysis options, followed by another group which can draw, select,
label, delete (in this case with an eraser as the icon) or accept. Some more icons follow including
a text string that could easily have been put in a status bar that is useful here, and finally a
subsidiary icon to rapidly bring up help on what particular mouse clicks can do.

%ib

%ib[coloured]

%ib[flat]

Figure 10. 6 Three variants of %ib toolbars

The flat variant makes all the icons look as though they are greyed out, but on mouseover their
colours appear.
 The following toolbars have been drawn using %tb, reflecting styles very current with
Windows XP and Windows 7. These are not options in ClearWin+ but have been obtained by
drawing the icons with the 3D bar effect, and at this effect has to be applied when drawing all
the icons for the different states of the toolbar buttons. Rather unfortunately, the spacing is
erratic with large font settings and this caused gaps to appear in the toolbar. The solution was
actually rather simple and that was to draw a bitmap with effectively blank toolbars and put
that in the toolbar location at first, before drawing the icons for the toolbar over the top. Then
the spacing did not matter but different bitmaps are required for standard and large font
settings.
 The separator bars are actually drawn as separate icons, where they are not clickable.
Separators need to have their own help strings, but they are never used and can be anything
you like.

106

 The text string on the second line of the toolbar was originally a typical cartouche, but an
upgrade to the %rs output format produced an extra line of white underneath the text string,
and until that was fixed by the introduction of the no_extra_space qualification, ruled out the
use of the ordinary cartouche and by the time the modification had been made available the
underlying bitmap had already been modified, and I actually preferred the result!

%tb (drawn in XP silver style)

%tb (drawn in Windows 7 grey style)

Figure 10.7 Toolbars drawn with %tb and extreme attention to detail, but sadly with Windows XP (top) or

Windows 7 (bottom) default styles. They still look fine - to my eyes at least.

10.13 Tools in a status bar

Just a quick reminder that of the two methods of defining status bars, the %sb approach (see the
online help files) only allows a progress bar as a tool, although it can be added in any panel,
whereas status bars defined using %ob[status] … %cb may have all manner of controls,
including sliders (such as several MS apps use to control zooming), buttons, icons etc in a multi-
line status bar.
 Personally, I’ve never needed to put controls into a status bar, nor for that matter, to have any
sort of toolbar anywhere but on the main window of my applications.

10.14 The one easy thing about toolbars

While drawing the icons is time consuming and requires those tricks that I described above,
there is one nice thing about programming toolbars, and that is that the vast majority, if not all,
of the required callback functions will have already been written in connection with the menu
bar commands!
 I have found from experience that toolbar buttons definitely need help popups, but menu
commands and other buttons do not, provided that they operate in standard Windows modes.
If you find that you do seem to need pop up (or ‘balloon’) help, it probably means that your
action words are not sufficiently descriptive, or that they need to be used in unconventional
ways. The solution is in your own hands …

107

11 Tabulated output for screen or printer

Printed output is as old as Fortran itself. Early mainframes tended to have line printers attached
that printed on fanfold paper with about 132 columns of characters, and the font (as such) was
monospaced so that it was comparatively easy to get columns of print to line up. The printer
would assemble all the print for a particular line and print that in one impact, which tended to
make the line printers rather noisy, but for those of us who were used to the progress of a
teletype or typewriter the line printers were astonishingly fast.
 There tended to be Hobson’s choice as to which printer to use because the mainframe would
have typically Fortran logical unit number 6 preconnected to a single line printer.
 Computers that operated with time-sharing, terminal access, tended to map unit numbers 5
and 6 respectively to the keyboard and screen, and this was the norm with Fortran on personal
computers prior to the advent of Windows.
 Much of the output from Fortran programs in those past eras tended to be tables of numbers.
It may still be necessary to display those tables.

11.1 Pre-Windows and early Windows personal computers

Early personal computers tended to be attached to dotmatrix printers of which the dominant
type typically printed 80 characters across in paper that was also fanfold and sprocket driven.
If one spent more money, then wide-carriage printers could match the 132 columns of the old
line printers, while using 15 inch wide (and thus more expensive) paper. Most printers could
be switched between 8 and 10 characters per inch, and many offered alternate character sets
and effects such as bold or italic type with or without underlining, and sometimes with non-
Roman character sets. Printers tended to be connected to the parallel (Centronics) port of a PC,
or less commonly to an RS232 serial port, but neither style of connection is common on modern
personal computers and by not common I mean as rare as hens’ teeth!
 In those old days, communication with the printer and switching between character sets,
effects and so on could be done using escape codes. Escape codes are sequences of characters
beginning with No. 27 in the ASCII code sequence, which is called ‘Escape’ or simply ESC.
Anyone fascinated with such computer archaeology could well buy a second-hand copy of what
I had found it useful at the time: a book written by Stephen Morris and entitled Newnes PC
Printers Pocket Book (published by Butterworth-Heinemann). Early laser printers had similar
sorts of connection and either used an escape code based language or if one was prepared to
spend a great deal more money, the page description language Postscript. By far the majority
of laser printers used A4 paper10, which was one step up further in the expense of running the
things, especially when combined with the cost of toner cartridges. Although A3 printers were
available using laser technology they tended to be disproportionately expensive to buy and to
run. Interestingly enough, the PC Printers Pocket Book is still available second-hand, and covers
both various printer control languages and Postscript.
 Most dot matrix printer types were supplanted by inkjet printers which tended to offer colour
and a higher resolution, and all dot matrix, laser and inkjet printer types could print graphics if
they had the right driver software, which Windows ultimately simplified because printer
manufacturers almost always provided a Windows-compatible driver. Finally, we got to the
situation where many printers of the laser or inkjet kind will only function if connected to

10 US letter size in the US and Canada, A4 in the rest of the world.

108

Windows whether directly or via a network. Windows will print on these devices by treating
them as graphics devices and so even printing text as a sort of sophisticated graphics. Usually,
Windows is configured so that one can print to a default printing device or to another one that
the user selects specifically.
 Annoyingly, some cheap printers don’t get updated drivers for later versions of Windows,
and this means that perfectly serviceable hardware has to be discarded. Sometimes, as was the
case with Lexmark’s inkjet printers, a manufacturer withdrew entirely from a particular type
of product, annoyingly abandoning every user who had bought their product (like me!).

11.2 ‘Printing’ to the screen

FTN95 considers that a variety of unit numbers are ‘preconnected’ to the screen and keyboard
of a PC, notably 5 (keyboard) and 6 (screen) and * (both). If you simply WRITE to device 6, or
PRINT or WRITE to device *, then the printout will appear in a scrollable window. This Window
will be a command window (DOS box) if WINAPP is absent, or if the WINAPP directive is given, the
output goes to the same sort of scrollable window, but with a Windows-style, black text on
white background, appearance. Despite being scrollable, there is no way to capture the output
from the Window (except as a screen grab), and as the text is stored in a buffer, there is a
sizeable, but limited, amount of data that can be displayed. While the window is resizable, it has
no command buttons, thus limiting its usefulness as a dialog. It should be useful for debugging
output if you do that by inserting output commands at various points in the source code,
particularly if you prefer that way to learning the operation of FTN95’s debugger.

11.3 ClearWin+ windows

Every now and again, I read something that leaves me completely puzzled. One of those things
is the so-called ClearWin+ window. While it might seem that it’s a hangover from the early days
of ClearWin+ it is in fact rather more useful than you might imagine. You can, for example,
change the font, the text colour, or various other effects not available if you just link the printer
to Fortran output.
 In the example that follows, a ClearWin+ window is opened as the client area to an
independent dialog box, and this window will remain open to accept anything written to unit
99 until the dialog is closed. With %ww the dialog has minimise and maximise buttons on the
caption bar, and the ClearWin+ window, although set to 70 characters wide and 30 lines high,
actually takes a pivot so that it can respond to RESIZE events (without programmer
intervention). The window also has scroll bars so that the contents can be reviewed even if the
window is shrunk to a smaller size.
 The text that appears is monospaced. The WINIO@ calls to set up an independent dialog
containing a ClearWin Window that can be written to using unit 99 is:

 IA = WINIO@ ('%ca[Text output to Unit 99]%2nl&')

 IA = WINIO@ ('%ww&')

 IA = WINIO@ ('%pv%70.30cw[vscroll,hscroll]&', 99)

 IA = WINIO@ ('%lw', KONTROL_HANDLE)

The %lw windows handle allows the window to be closed by setting its value to 0. ClearWin+
windows can, of course, be of fixed size, and if desired, be combined in a dialog with other
controls. It is possible to use the standard callback ‘COPY’ with a ClearWin+ window in order
to capture highlighted text to the clipboard, which requires the callback to be linked to a button
or toolbar, or even a menu item, but it is unusual for menus to be provided for dialogs.

109

The mechanism for changing fonts and colours and font effects is somewhat long-winded. The
advice from Silverfrost is that ClearWin+ windows are obsolete, and I think that on balance my
advice would be to avoid them as well, although you might find them to be the solution you’re
looking for. In that case, they are documented in the online help file.
 Personally, I think that neither of the foregoing methods fits well with a Windows paradigm,
where logically the results of an analysis should be presented graphically, and tabulated
outputs, if they have any role at all, need to be kept in a disk file for archival record purposes or
be printed out as hard copy.
 A particular use of mine that did require printouts of tabulated data was where I needed to
give groups of students a sheet of angles and distances so that they could go out into the field
and set-out part of a road alignment. The quantity of data was actually quite small in every case
and would fit on a single sheet. There was no disadvantage in using a monospaced font in a
reasonably large point size, and printing each group’s data on a separate sheet was actually an
advance on having to tear up pieces from a fanfold printout.
 A related case, not from my experience but from a colleague’s, was the need to present the
results of a structural analysis for submission to a building control office in support of a design.
They knew very well that many pages of printout would never be looked at seriously and his
printout needed to be brief and authoritative as well as simple to understand, graphical, as well
as needing to be correct.
 It is not therefore that there is never a need for tabulated output, but that it is very desirable
to think about whether or not you need to see columns of numbers in the first instance or to
preserve them in paper form. The first of those considerations needs to be considered in the
light of what you will do with those numbers. If it is to plot a picture, then the sensible thing to
do is to get the computer to plot the picture and not bother with the numbers, at least, not in
the first instance, or use the numbers as annotations to the picture.
 Taking all the above into consideration and noting that there are instances where tabulated
data needs to be printed out then we need to look at how it should be done.

11.4 Printing hardcopy like a lineprinter

The PC Fortran traditional approach of identifying the printer in an OPEN statement, e.g. as in:

 OPEN (LPT1:)

no longer works and so we have to identify the logical unit number with the printer in some
other way. One way is via the standard callback PRINTER_OPEN or PRINTER_OPEN1. Standard
callbacks are always supplied to WINIO@ in quotes. Here’s the way I do it, in the following
example by connecting logical unit LUN to the printer:

 LUN = 10

 IB = WINIO@ (‘%mn[[Print]]&’, ‘PRINTER_OPEN’, LUN, KB_PRINT)

The equivalent that allows the user to select which printer is used (if there is a choice) uses
‘PRINTER_OPEN1’. I have a choice of two physical printers, but even when there is no printer
connected, there may well be other choices such as ‘print to PDF’ that I want to select.
 Will you get confused between ‘PRINTER_OPEN’ and ‘OPEN_PRINTER’? The answer depends
a lot on how you work, but I certainly do. Then, I have to consult the online help.
 What you print is up to you, but do remember that ordinary Fortran printing was designed
for continuous media, and modern printers usually operate with sheets. With sheets, it is
advisable to provide headings on every sheet, and count the lines output. You may find that
other information needs to be printed on each sheet (see section 12.5).

110

Remember to use CLOSE (LUN) to ensure that the last sheet is printed and to disconnect that
unit number from the printer.

11.5 A ‘print station’

In one particular program of mine, the user has a set of choices on what to print, and how to
print it, the how including whether to print a file copy in monospaced font and cramming a lot
on the page, or in a display format for a noticeboard, using large, proportionately-spaced fonts.
There was a risk that the File/Print menu command would have rather a lot of options, including
whether or not to print on the default printer. To keep to a single menu item (incidentally, also
linked to a toolbar) I programmed the File/Print menu command to bring up a ‘Print Station’ –
a dialog with all the options. Rather than duplicate the options with ‘PRINTER_OPEN’ and
‘PRINTER_OPEN1’, I was able to put a single %`rb tick box on the dialog with a status variable
iPrint_on_Default (preset to 1 for using the default, but user changeable). Then, the Print
Tables button on the Print Station dialog launched another Window that was not only invisible,
but also started up by associating the printer with logical unit number 9 (or any number I had
chosen), and closing itself, while leaving the printer and unit still associated:

 IF (iPrint_on_Default .EQ. 1) THEN

 IB = WINIO@('%ww[invisible]%sc', 'PRINTER_OPEN1', 9, NULLISH)

 ELSE

 IB = WINIO@('%ww[invisible]%sc', 'PRINTER_OPEN', 9, NULLISH)

 ENDIF

The code appeared in every callback from the Print Station. I found it useful to have another
tick box for ‘Keep Print Station open’, which facilitated printing different things without
returning to the main menu system or toolbar icon.
 Perhaps I could have named the callback simply by the name NULL, but deep down that
shorter name signifies something to me, so perhaps a name for the callback function such as
JUST_RETURN might do equally well instead, or something with a KB_ prefix.

 INTEGER FUNCTION NULLISH()

C -------------------------

 NULLISH = 0

 RETURN

 END

After you have identified logical unit 9 with the default or other printer, then it is simply a
matter of producing formatted output using WRITE and the appropriate FORMATs. This approach
uses a monospaced font, and in every respect other than quality, which is usually higher on
modern printers than anything we fantasised about having in lineprinter or inkjet printer days,
is the same. After printing output to unit 9, printing is simply terminated with CLOSE (9).

11.6 Another idea

Considering how much effort goes into producing any sort of a Windows app, and in my case,
how I recognised that I would probably never have the time to commit to produce an editor
program, an alternative presents itself, and that is to use a third-party program that already
exists to display voluminous tabulated data. This could include the much-maligned Windows
Notepad application.
 A very simple way to invoke NOTEPAD.EXE would be to use would be to use START_PROCESS@
or START_PPROCESS@ as we did to launch the hypertext help program HH.EXE early in the

111

development of our source code back in Chapter 2. You could save your tabulated data in a file,
and then launch NOTEPAD.EXE with the name of that file. FTN95 has a routine for generating
unique filenames for temporary use. If your file was not particularly long, then it might still
even be in the disk cache and therefore read slightly more quickly than if it was only on a hard
disk, although there is still the time taken to load NOTEPAD. Increasingly, computers are
equipped with solid-state disks which are faster than spinning hard drives, but the disk cache
is even faster.
 Instead of opening a file through the Windows dialog, a filename is found by means of the
following code:

 CHARACTER*(long enough) FILENAME

 INTEGER*2 IERROR

 CALL TEMP_FILE@ (FILENAME, IERROR)

 OPEN (FILE= FILENAME, UNIT=LUN etc)

 write the contents

 CLOSE (LUN)

 CALL START_PROCESS@ (‘NOTEPAD.EXE’, FILENAME)

Note that the returned error code is INTEGER*2 (or KIND=2 if you prefer) because TEMP_FILE@
goes way back into the prehistory of FTN77. Even a rather trivial Windows accessory such as
NOTEPAD is comparatively sophisticated, allows printing, cut-and-paste and various other
operations that would be quite hard to program for yourself no matter how adept you are at
Fortran and however good and supportive you find the facilities of ClearWin+.

11.7 Take a moment to reflect ...

I well remember my early days using a computer where my efforts in programming led to a
rather substantial heap of print out in the form of listings, and when finally, the program
worked, every run would lead to yet another addition to the pile. Notwithstanding several clear-
outs when I moved offices, on retirement I had to dispose of even the things I had saved that
were covered in dust and cobwebs and the spiders whose diet consisted of whatever bugs were
eating the paper. I knew many PhD students and even some academic staff together with many
people in industry who were amassing similar piles of paper that were very rarely if ever looked
at again. In many cases there had been a voluminous output which was scanned for very few
but critical data values, and the rest was just padding.
 I also knew PhD students whose seeming main role in life was to take data from those
printouts and construct various diagrams and graphs, either for their theses or for a paper to
be submitted to a scientific journal. The point therefore is why should you really want to print
out vast quantities of data or even just display them in a scrollable list on a computer monitor.
Surely the computer can do the presentation work far more effectively than the harassed PhD
student. Windows, in combination with FTN95 and ClearWin+ can do that for you, particularly
in the case of your analysis where you probably know in advance what sort of presentation of
data or results is likely to be required.
 Personally, therefore, I should eschew both the display of large quantities of tabulated data
and indeed, printing out the same, and prefer some display of what the data values actually
mean. That is not to say that there is no value in the generation of those results, but their
interpretation really does require a bit more imagination than poring over long lists of
numbers.
 In a previous chapter I have discussed what you might save in the way of input data and
results. I made the suggestion that you consider appending the results to the data in the same
file, and therefore, should the datafile be opened at a later date, your program would not need

112

to perform any analysis but could simply operate on the results in the file. Certainly, if the
runtime of the analysis is of any concern at all (and sometimes it is not), then to follow that
approach could represent a substantial saving to the user. Moreover, as a file of results in any
case is rather meaningless without a record of the input data, then your program quite possibly
saves both at the same time already, although perhaps not in a format that can be easily re-read
by a computer unless the application has been programmed to do so.

11.8 What to do with large volumes of printout

The best thing to do with voluminous printouts is not to generate them in the first place, but
instead to keep them archived on some sort or readable storage medium (which is what paper
is, I suppose, but I mean computer-readable). The problems associated with storage on
computer-readable media include:

• Making sure that the media are durable
• Making sure that the media remain readable
• Making sure that you can find what you want

There may be some forms of removable media that lose their data over time, especially optical
media such as CD and DVD.
 As for whether or not the media remain readable, I have used in the past 8”, 5.25” and 3.5”
floppy disks, with the 5.25” and 3.5” disks of various formats and densities, including whether
they are single or double sided. There were other media such as ZIP and JAZZ disks, CDs and
DVDs (Blu Ray anyone?), the rarer 3” floppy disks, magnetic tapes and so on. The problem is
that by and large many of those media are not readable on current generation PCs.
 Paper turns out in the end to be just as ephemeral as everything else!

As to whether or not you can find what you are looking for, that is a matter of the file storage
system in use and the file naming convention employed. It is therefore helpful for your
application to generate file names automatically and at the same time maintain some form of
database of what the contents of those files contain. That is a matter of programming outside
of ClearWin+.

113

12 Printing graphics

There are three generic cases to consider:

• Printing text only, but in graphics mode.
• Printing a page containing a graphic that extends to the edges of the paper.
• Printing a page that contains both text and a large graphical image.

12.1 Printing text only, but in graphics mode.

Most Fortran programmers who are used to a lineprinter expect to just continue printing line
after line with the text just missing the perforated lines that have made the sheets fold into the
paper box (i.e. the paper is probably sprocket-fed, fanfold paper). Even printing on a printer
that takes discrete sheets, the same principle applied in the past. Under Windows, however,
your application treats each page as a separate entity, and you have to do assemble everything
on the page before it can be printed. In effect, each page is one large graphic.
 A first issue to consider is whether or not you wish to print on the default printer, as explained
in the previous chapter. The method of readying a printer to accept graphics is similar, but
different in detail.
 Then, if you have not already done so, you must determine the critical printer parameters,
most notably the size of the printable area in pixels in each direction and also the effective dots
per inch. The use of dots per inch will certainly frustrate any programmer whose experience is
exclusively in metric, but the useful conversion factor is that 1 inch is 25.4 mm. Programmers
will also have a certain amount of frustration with the use of points, because an inch is 72 points.
The net result of these units is that there is unlikely to be in exact number of pixels in a point or
an inch, except in the case of some Epson printers where the dots per inch setting can be 144
or 288 (or some larger multiple) and therefore there is a precise number of pixels per point.
There is never an equivalent in mm.
 To print pages as graphics the printer can either be the default printer or one selected by the
user and in the example below, I have done this via a subroutine call. Either subroutine returns
an integer number called a handle, and this handle is subsequently used firstly for Windows to
load all the parameters for that printer, referred to as the device context, and these parameters
can be obtained from the device context using the subroutine GET_CURRENT_DC@ using its handle
as a parameter in the subroutine call. Subsequently, the device capabilities are found.

 IF (iPrint_on_Default .EQ. 1) THEN

 IB = OPEN_PRINTER1@ (jHDC)

 ELSE

 IB = OPEN_PRINTER@ (jHDC)

 ENDIF

 IF (IB .EQ. 0) RETURN ! IB is equal to zero if the call failed

At this point, the properties of the printer can be found:

 CALL GET_CURRENT_DC@ (jHDC)

 CALL USE_RGB_COLOURS@ (0,1) ! This works, but …

C CALL USE_RGB_COLOURS@ (0,.true.) ! This is the correct form

mailto:USE_RGB_COLOURS@(0,.true.)

114

 ixdpi = GetDeviceCaps (jHDC, LOGPIXELSX)

 iydpi = GetDeviceCaps (jHDC, LOGPIXELSY)

 jXRES = GetDeviceCaps (IHND_PRN, HORZRES)

 jYRES = GetDeviceCaps (IHND_PRN, VERTRES)

LOGPIXELSX, LOGPIXELSY, HORZRES and VERTRES are parameters whose values are set

in the .INS files. Perhaps at this time the printer orientation might be set,

using:

 CALL SET_PRINTER_ORIENTATION@ (0) ! Portrait

Or

 CALL SET_PRINTER_ORIENTATION@ (1) ! Landscape

ClearWin+, at this point, must be directed towards the printer page as its drawing surface,
which is done using the function SELECT_GRAPHICS_OBJECT@, as in the following, using the
correct handle:

 IA = SELECT_GRAPHICS_OBJECT@ (jHDC)

The default entry in the Windows’ print spooler is that the job is a ClearWin+ printout, but it is
more useful to set the name of the print job by setting the string yourself, as in this example
where the string is 'SCAMPS Major Control Report' and PRINTER_DOCUMENT is the parameter
defined in the .INS file for this purpose:

 CALL SET_CLEARWIN_STRING@ (PRINTER_DOCUMENT,

 & 'SCAMPS Major Control Report')

These lines of code have been taken from a working program where what is to be printed (for
notice board display purposes) uses the Arial font with height and width set in points, and a
line spacing LineStep of 1/3 of an inch with margins Margin of 1/2 an inch:

 CALL SELECT_FONT@ ('Arial')

 CALL SIZE_IN_POINTS@ (24,12)

 LineStep = iydpi / 3.0D0 ! 24 point out of 72 point in dpi

 Margin = ixdpi / 2.0D0

Every time a page is filled, the following call is required to start a new page:

 CALL NEW_PAGE@

On completion of the print run it is desirable to close the printer. Doing so ensures that the last
page is printed.

 CALL CLOSE_PRINTER@ (jHDC)

An issue always comes to the fore when printing with proportionally spaced fonts and that is
the difficulty of getting columns aligned with tabulated numbers. While this can be resolved by
switching to a monospaced font, the net result is comparatively ugly and not one that looks like
the output from a Windows program. The solution is to position the text after measuring the

115

size of the text using GET_TEXT_SIZE@11. With columns of real numbers, they should be aligned
on the decimal point which generally requires the measurement of the section of a text string
before the decimal point and printing that separately from the section that follows.
 The paper size will determine how many lines at what heights can be printed and a decision
can also be taken as to whether to print multiple pages or scale everything to fit on one page.
 I call the resulting pages ‘reports’ and given the effort taken in measuring everything to fit, it
does seem to me that it is only worth the effort if the information is valuable. To make sure that
a user doesn’t cut, paste and photocopy a fake report, I suggest placing a faint watermark on
each page, numbering each page with a note of the total page count, adding the date and time it
was printed, and possibly even adding information such as a logo or company name. Perhaps
my caution in this respect is from having seen too much paperwork in which numbers have
been ‘fiddled’, usually after a failure when blame and costs must be attributed to someone else.

12.2 Printing graphics on their own

Printing a whole page with a single drawing on it is comparatively simple, because the image
will be cropped to the printable area of the paper and it is only a matter of initialising the
graphics printer, interrogating the driver to find out the printable area and DPI settings,
calculating the scales and then repeating the drawing exercise that was used previously to
generate the screen image.
 Engineering drawings usually have some sort of drawn border together with a title block
giving information such as the drawing number, the project name, details of who produced the
drawing and revision information. The border is provided so that the recipient will know that
they have the complete drawing and not some piece cropped from a larger drawing. Many
engineering drawings have a scale that also needs to be provided. Information such as this takes
up space on the paper, for which allowance must be made. The details of this additional material
depend on the nature of the application.
 The DPI setting is returned generally honestly by the GetDeviceCaps function, and so is the
size of the printable area in pixels. I had an unfortunate experience with some Xerox A3 printers
which originally returned the printable area dimensions in mm, returned fake values after a
driver update. There is at least one large country in the world where people either don’t know
or care what millimetres are, and I imagine that the updated driver came from there. The return
values for A3 paper were 240x271mm which is arrant nonsense. Otherwise, and as originally
bought, the printers were fine.

12.3 Printing a mixture of text and graphics

When a printed page contains a graphical image as well as some text, that image may well be
cropped from part of a larger illustration. There are techniques for cropping images, but you do
not need to apply them in the normal run of things so long as you draw that image first, you can
then blank out parts of the page into which unwanted elements of the image project by
overwriting them with white rectangles. In that way you can, for example, increase the binding
margin as well as ensuring that where the text will be placed is clear white underneath. The
text itself may need some very careful consideration when using a proportionally spaced font
as described in section 12.1.

11 I am told that the routine is not accurate when the font is bold or italic, and may underestimate the
length somewhat.

116

 In the above, I have assumed that the graphical part is drawn at the time the page is printed.
Of course, there is a case – perhaps – for pre-preparing some graphics elements as bitmaps, and
placing those instead of drawing the object. The problem then arises that the bitmaps have to
be drawn at numerous sizes to cope with different printer resolutions, and that means in turn
that when incorporated into a program executable via its RESOURCES, the effect on the size of
the executable can be dramatic. It may be that the effect has to be suffered with something like
a company logo, but for things such a North arrows, scale bars, legends etc, it is better that they
are drawn when required. On screen, the use of pre-prepared bitmaps is generally to be
preferred as they are inevitably much smaller in size (measuring bytes), and various graphical
effects such as drop shadows, 3D effects, smoothing of edges and so on can be included easily.

12.4 Some issues while printing graphics

One thing to beware of when using a laser printer is that the toner is fused to the paper with
heat. Large areas of dense colour may be too large to be effectively fused, and the result of that
is that the layer of toner may not adhere properly to the paper and may become detached or
crack when the paper is handled. Worse still, some of the toner having slightly melted and
formed a sheet may detach itself inside the printer with consequent bad effects. I speculate that
there is a limit to how much heat printers can generate without actually setting the paper on
fire.
 Inkjet printers also have issues when printing large areas in saturated colours in that the wet
ink makes the paper soggy, especially if standard office 80 g/m² copier paper is used. Up to a
point the issue may well be resolved by using thicker and heavier weight papers, or even papers
that are coated and sold as photo quality. Paper that has been saturated by the liquid ink
normally stretches at the very least and you do not get perfectly flat paper afterwards.
 Both laser printers and inkjet printers are usually perfectly at home printing text where the
coverage of the paper is quite small. The problems with both arise with large areas of saturated
colour. On-screen, saturated colours work extremely well, but it is worth lightening shades
when printing on typical office printers using standard weight office copier paper. Colours in
ClearWin+ graphics are specified with RGB colour triplets. Printers typically use four colours
or more, cyan, magenta, yellow and black (CMYK) and instead of the RGB colour system which
is additive, the CMYK system is subtractive. Inkjet printers that are sold as capable of printing
photos may have extra colours, such as in my Epson all-in-one combined printer and scanner
that also has black, light magenta and light cyan cartridges. Another side effect of using very
saturated colours can be an excessive consumption of toner or ink, and as today printers are
normally sold cheaply with the manufacturer recouping some of the expense by overcharging
for supplies, then even if the printer or paper is not damaged, the cost of printing with saturated
colours does increase dramatically.
 It is possible to find equivalents for RGB triplets in terms of CMYK, but in general, lightening
shades depends on increasing the values of the RGB elements in ways that always seem to me
to be a bit counterintuitive, but one should remember that black is (0,0,0) and white is
(255,255,255). For example, blue is (0,0,255) but to make a lighter blue we can increase the R
and G so that a light sky blue might be (135,206,255). The whole business of colour spaces is
something that you may need to research independently. There does not seem to be a simple
algorithm to make the colours seen on the screen become lighter for printing, and it may well
be worth only choosing relatively light shades for on screen display anyway.
 A way of avoiding areas of dense saturated colour is to revert to the use of fill textures such
as hatching or crosshatching, but they are not provided as standard facilities in ClearWin. Some
of the basics of hatching irregular areas are covered in ‘High-resolution computer graphics using
Fortran 77’ by Angell and Griffiths (Macmillan), a book that is probably now out of print but like

117

so many can be obtained second-hand from online booksellers. One should be aware of overuse
of textures because they can make a graphic look extremely congested and worse still,
amateurish. So much so that the noted author Edward Tufte in his acclaimed books refers to
them as ‘chart junk’. One simply had to use chart junk in the days of monochrome-only printing.
 An issue that is easy to forget is to omit to send the appropriate command to finish printing
the last page of a print job, in which case it may come out only when the printer is used again,
and with a mix of the last page of the old job on the first page of the new.
 Under Windows it is also a good idea to name the print job so that if the printer for it is, for
example off-line, and the print job is held up in the print spooler, then you can recognise what
it is.

12.5 Printing from a commercial application

It is always a good idea to format printed pages from any application with due regard to the
size and shape of the printer. Sometimes it is necessary to provide some type of traceability to
the results of a computation, and my advice is therefore to print either as a header or as a footer
on every page the name of the application that had generated the output including its version
number and the time and date when the output was generated. It is also very useful to pre-
calculate how many sheets will be printed and to identify each one with ‘Page number X of
Y’ (or perhaps using my predilection for IMPLICIT type, ‘Page number I of N’).
 The disadvantage of printing like a lineprinter is that unless printing on pre-printed headed
paper it is not possible to include any logos or watermarks. If you want to include such features,
then you have to print each page as a graphics object, or invest in the appropriate pre-printed
headed paper.
 It is always valuable when acting as a reviewer to know that you have the complete document
in your hands, and when doing a forensic study, to be able to reconstruct any developments in
analysis and how things changed. Files that contain information such as the date, the total
number of pages printed and so on, are easiest to check.

12.6 Issues relating to Print on the File menu

If there are many options as to what to print and how to print it, then rather than having a set
of sub sub-menus it is sometimes better to launch a dialog, containing all the options, and
perhaps including a tick-box labelled as ‘Use default printer’, with the box initially ticked. I use
such a dialog in one of my programs, which I call the Print Station. This is what it looks like:

Figure 12.1 My 'Print Station’ dialog box.

118

Using it, summaries can be printed out in graphics mode so that they can be posted on a
noticeboard for all students on that course to have access to, but individual groups can generate
reports of their own individual contributions to the overall picture either as a momento of their
work or as an adjunct to their report on the activity.
 Because a user may wish to print more than one thing, this dialog has a tick box to keep it
open until all types of printing are done with. Your program’s (users’?) needs may be different,
and you may keep the dialog open or close it after each item as you wish. Notice that an entire
category of options is greyed out depending on the selection in the first box. When you link
items in this way the user should be helped to work from left to right, even though they can go
backwards or forwards in selecting options.

12.7 Portrait or landscape?

An issue that often escapes attention is that while ClearWin+ allows the programmer to select
portrait or landscape format using SET_PRINTER_ORIENTATION@, the user has the final say, and
can change this in the printer driver dialog that is part of Windows rather than ClearWin+. At
the point of determining the number of pixels in x and y on the printer page it is possible to see
if the user changed the program’s settings to their own preference. Should such a situation
arise, and the user-selected orientation not be appropriate for the aspect ratio of what is to be
printed, there are several options:

• Go ahead and print with the user preference

• Ask the user if they are sure, and obey the response

• Rotate the print by 90 degrees

The first option may well lead to only part of an image appearing, especially if the print job has
a fixed scale (e.g. a site plan at 1:500 scale), but careful programming can overcome that by
printing the image on multiple sheets with some sort of overlap. Rotating the print image in the
case of a simple graphic is just a matter of using a different transformation, for example, instead
of the usual two scaling STATEMENT FUNCTIONs to map x and y real-world coordinates to x and y
pixel coordinates respectively, it is a matter or mapping x (real world) to y (pixels) and y (real
world) to x (pixels), remembering the relative orientation of the pixel axes.
 Asking the user leads to one of the other 2 options, although a third possibility is that the user
simply cancels the print job and starts again.

12. 8 Line thicknesses and font sizes

Very early laser printers printed at 75 or 150 dpi, meaning that lines of 1 pixel width printed as
almost 1 or 0.5 points. The norm then changed to 300, 600 or even 1200 dpi, and with the
highest resolutions, the 1 pixel line becomes at first a hairline and then barely visible. Inkjet
printers may offer equivalent resolutions, although some (for example Epson printers) operate
with 360, 720, 1440 or 2880 dpi. The issue of the visibility of lines becomes important. The
setting is usually chosen by the user at the print driver dialog stage, and is done on the basis of
prompts such as ‘high quality’ or ‘superfine’. The solution is to examine the printer properties
and thicken the lines as necessary.
 Early in my career I was an adept draughtsman, using tubular nib pens (e.g. Rotring or
Standardgraph brands) and stencils. At first, I used 0.1, 0.3 and 0.5mm line thicknesses, but
later adopted the DIN standard sequence of 0.1, 0.14, 0.2, 0.28, 0.35, 0.5, 0.7 (which increase by
2 each time just as the A series of paper sizes does). Since 1 inch = 25.4mm, the inch

119

equivalents are readily converted and rendered into pixels at the relevant printer dpi
resolution.
 Preferred line thicknesses are described in books on technical drawing, but I find the
following rules of thumb useful.

0.1mm Dimension lines
0.2 – 0.3mm Typical outlines
0.28 – 0.35mm Used to emphasise
0.5 – 0.7mm Super-emphasis, drawing borders, etc

Structural engineers drawing (say) reinforcing bars may need to use even thicker lines. I do not
normally find that anything thicker is required for normal line drawing work, but in drawing
parallel lines it is a lot easier to draw a thick line in black and then over the top, using the same
coordinates, draw a thinner line in white, than to attempt to draw a pair of thinner lines
separated by a constant distance.
 At various printer DPI capabilities, the line thicknesses have an integer number of pixels as
shown in the table below.

Thickness 300 dpi 600 dpi 1200 dpi 2400 dpi

0.1 mm 1 2 5 9
0.2 mm 2 5 9 19
0.3 mm 4 7 14 28
0.5 mm 6 12 24 47
0.7 mm 8 17 33 66

Character heights are almost infinitely scalable when using fonts (although limited in practice
by the pixels). At really high printer resolutions, 6pt text becomes readable, but at normal office
printer resolutions 8pt is a minimum. For large bodies of text and tables, 10 to 12pt text is
usually fine (corresponding to old typewriter standards of pica and elite, but the choice of font
is also a factor. Headings need to be 12-14pt or larger.
 This book, for example, has been produced with body text at 12 pt Cambria with Section
headings in 14pt Optima and Chapter headings in 16pt Optima. Footnotes are in Cambria 10pt,
and Figure captions also in 10pt.
 Annotations on printed graphics done with tubular pens and stencils tended to use characters
that were 10x the corresponding line thickness, but Windows fonts are more flexible and
detailed. For many uses, the default graphics font and font size are good enough in print as
onscreen, but if one does need to set font sizes for annotation then smaller fonts are appropriate
for higher resolutions. It is always worth checking that text fits on the paper!

12.9 Vector graphics, and saving files for interchange of graphics

My first experiences with pen plotters were with devices connected to mainframes with an
unknown plotter control language but using a library of routines customised for that particular
mainframe and plotter. Sometimes it was not necessary to know whether the plotter was a
drum type or a flatbed, but certainly the selection of pens tended to be limited and that also
limited the choice of line thicknesses and colours. Later on, in the PC era, both drum and flatbed
types were available, usually connected to the PC using an RS 232 serial connection or a parallel
(Centronics) connection, neither of which is found on a modern PC. PC connected plotters came
in a variety of paper sizes with A4 sheet or A3 sheet sizes being particularly common for the

120

desktop. A photograph of such an installation manned by my former PhD student, who is now
a (retired) professor in his own right, is shown in my book ‘The Stability of Slopes’ (1985).
 In the personal computer era, pen plotters were supplied with a useful manual that described
the entire plotter control language. Many plotters not only supported their own language but
also had compatibility with the language used to control Hewlett-Packard’s pen plotters, a
language described as Hewlett-Packard graphics language or more simply HPGL. This graphics
language was basically a combination of commands that enabled one to select a particular pen,
move it to specific coordinates in an up or down state (only the latter drawing a line), or to draw
characters.
 Even the monochrome (single pen) plotters without any variation in line thickness were very
useful for many types of drawing including but not limited to engineering drawings. For
example, circuit diagrams very rarely require colour, even though it is perhaps a useful adjunct.
 HPGL was updated to HPGL / 2 with the addition of the ability to set line thicknesses and to
fill areas, attributes related to raster-based rather than pen-based devices.
 While a Windows program will more often produce its graphics via a dedicated software
driver to a device that may be not even physically present where the computer is located, some
interchange of graphics created in a plotter language may still be found useful. Doing so in a
dedicated, manufacturer specific, plotter language would normally be an extremely eclectic
choice, but interchanging graphics using HPGL or HPGL/2 has some benefits, notably that some
graphics packages will accept input in this format (for example, CorelDRAW!) and if the two
applications have the same authorship, then the formatting of the output by one of them can be
recognised by the other without any difficulties of parsing the data in the transmitted file.
 The details of HPGL can be found in old plotter manuals of the appropriate sort, on the
Internet where HPGL has a good Wikipedia entry, or perhaps preferably in a book which like so
many is likely to be out of print. Hewlett-Packard was the corporate author of a book entitled
The HP GL/2 reference guide, later published in a third edition as The HPGL /2 and HP RTL
reference guide, which makes me suspect that the first edition may well of been HPGL only! I
have lost a number of books loaned to students (and colleagues) and not returned as well as
books that were loaned out and returned, but my copy of this book is the only one that a student
not only returned but in the interim had obtained his own copy which he swore blind he would
never use at any later point in his career and therefore gave me to take up that small extra space
in my bookshelves!
 As the programming of HPGL (any version) is a simple matter of writing files and reading
them, and not in any way connected to ClearWin+, then I do not propose to go much further in
describing how to do it, but just to make a couple of points.
 Firstly, that it is a good idea not to draw right to the paper edge, but instead to consider that
the plotter drawing surface is limited in some way, and I find that 270x180 mm is good for A4,
360x270 mm is good for A3, and so on (landscape dimensions). Plotter steps are typically
0.025mm or 0.000 98 inch or 1/40 mm or 1/1016 inch (not 1/1000 exactly).
 I have found it most convenient when using HPGL to write a set of routines that mimic the
ClearWin+ routines and then to copy my program’s graphics drawing routine but simply to
change their names. This does not use anything like the facilities in HPGL or HPGL/2 but does
simplify the task. I tend to write the plotter commands using very simple formats as that
simplifies rereading the graphic file. CorelDRAW seems to import HPGL files without much
demur no matter how big or complicated they are.
 An alternative language for the interchange of vector graphics information is a file type called
scalable vector graphics which is usually stored in files with the SVG extension. ClearWin+ has
the ability to generate SVG files and in certain cases to import them so I describe this facility
below.

121

12.10 SVG graphics

The SVG graphics language is described in publicly obtainable documents on the Internet. Prior
to the implementation of SVG graphics in ClearWin+ I had written my own routines using the
method of mimicking ClearWin+’s names for graphics primitives and replacing the terminal @
with something else.
 However, in a comparatively recent update to ClearWin+, it is possible to specify that the
output should be in the form of SVG graphics language. SVG files are intrinsically readable by
Adobe Illustrator as well as CorelDRAW!, but with the latter I have found that complex graphics
do not import well, or in some cases at all, because of limitations in the recipient application,
which I find strange if not downright unacceptable. It may well be a problem resolved in a later
version of the application than the one I use.
 The mechanism to switching to SVG format output is covered very clearly in the online help
files. ClearWin+ generates superb SVG files, but the format is densely packed and it is not easy,
therefore, to use ClearWin+ generated SVG files as a medium of interchange between two of
your own programs.

122

13 Large fonts and dual monitors

Windows behaves by default with an assumption that the computer’s screen is measured in
inches, and that it displays 96 pixels per inch. These aren’t real inches, but relative inches, or as
Windows puts it illogically, logical inches. The 96 is therefore the logical dots per inch (DPI). On
high resolution displays, especially on physically small screens, the assumption of 96 logical
DPI can lead to text, especially, being rather too small to read easily (or at all). Microsoft’s
answer to this problem is a simple one: and that is basically to increase the logical DPI setting,
and of course, you can do this too as a user setting. Back in Windows 7, it was possible to change
the DPI setting to more or less what you like, but Windows 10 has a restricted range of logical
DPI settings, notably 120 and 144.
 Several things flow from the choice of ‘DPI’ whether logical or not, and one of them is the
impact on fonts specified in points. A 36-point character would take half an inch, which would
be 48 pixels high, and some heights would also map to exact numbers of pixels, but others to
fractional pixels, so the characters are rounded up or down. Hence, whereas a 36-point
character would be 60 pixels at logical DPI of 120, a 10pt character which is 5/36 of an inch in
height wouldn’t be an exact number of pixels at any of the standard DPI settings.
 While this scarcely matters at printer resolutions, it does on a screen, especially with text. It
also matters with things specified directly in pixels, because they aren’t scaled, and to a large
extent ClearWin+ behaves as though it was designed for 96 DPI!
 The problems that can arise with a DPI setting other than 96 include:

• Layouts of dialogs no longer working as they did
• Layouts of toolbars showing random gaps
• The use of relative and absolute positioning (%rp and %ap) and fixed size dialogs

becoming corrupted.

13.1 A workaround

There isn’t a simple solution if high DPI settings mess up your dialogs, The only way I know is
to interrogate Windows to find the DPI setting for the device with the handle jHDC, which we
get using the Windows function GetDC, fed with the parameter 0 (meaning the screen):

 jHDC = GetDC (0)

 IXDPI = GetDeviceCaps (jHDC, LOGPIXELSX)

 IYDPI = GetDeviceCaps (jHDC, LOGPIXELSY)

(DC means ‘Device Context’)

Then, after testing your program on computers using high DPI settings, either modify your
dialogs so that they still work, or program alternative dialogs that are used according to the DPI
setting found. If possible, avoid relative and absolute positioning, and use them only if you have
to.
 To hark back once again to the early history of personal computers, it was by no means
certain that IXDPI and IYDPI would be the same, but there came a point where most graphics
systems used ‘square’ pixels, and they are the same. I would advise not trusting this, as there is
a possibility, albeit a remote one, that they aren’t the same.

123

You should note that anything that relies on points, for example, SIZE_IN_POINTS@ will be
scaled, whereas anything defined in pixels will not, and also that pixels do not necessarily
coincide with points, except perhaps at 150% scaling, where a point equals 2 pixels. The grid as
defined by %gd is also an exact number of pixels, and hence ClearWin+’s alignment of things in
dialogs may change with the scaling.

13.2 Monitor size and aspect ratio

I have friends who are rich enough to afford laptop/tablets of the Microsoft Surface family, and
I once had a rather large screen, but heavy to carry, Acer desktop-substitute ‘laptop’ that was
fine to carry in the boot of my car and lug only a small distance, but which was really too heavy
to carry any distance. What you will find is that your application will need to be designed to
look good on a variety of monitor sizes as well as those that have large font settings by default.
The problem that manifests itself is unlikely to be with the Microsoft defaults, because Microsoft
can afford to do a huge amount of user testing. It is far more likely that the problem will arise
from some choice that you have made, for example in the size of the icons for toolbars or in the
size of particular features in a graphic. To avoid such difficulties, it is wise to be aware of the
size of the screen and to draw things on a screen drawing surface with the size and resolution
of that display firmly in mind. There is very little that you can do about toolbars and toolbar
icons except to produce multiple versions (with the concomitant effort required in creating
bitmaps) suitable for each family of variants.
 A particular issue that is comparatively easy to solve is the placement of toolbars. In
ClearWin+, the placement is essentially decided when you build the master window. The
traditional placement of toolbars is immediately underneath the menu bar, but, with a low
resolution monitor, particularly one with a widescreen format, then assuming that whatever
goes on in the rest of the client area can accommodate it, it may well be better to position
toolbars down the left hand side of the screen.
 I found that having designed the toolbars in section 10.12, they were unsuited to putting
down the left-hand side and so my experience is that you should investigate this possibility
before you settle on a format that prevents you using the icons in a particular way.
 Some monitors may rotate so that you can have either a landscape or portrait format with
Windows resizing some things automatically. This may happen whether you like it or not on
some tablet computers. If you think it is an issue, and cannot program round it, then it may be
something that you have to highlight in the program documentation. I have monitors like that
but never rotate them into the portrait orientation because it is so difficult to get them realigned
back, although I suspect that if I only had one monitor, I might be more prepared to rotate it
when I had work to do that is taller than it was wide, for instance writing this book!
 Ordinarily I would use the ‘along the top’ position for my main toolbars and reserve the ‘down
the side’ position for a toolbox of icons for graphic interaction. When I have had to use the left-
hand side and not the top position then I have been fortunate that they have been applications
where there are comparatively few toolbar actions.

13.3 Multiple monitors

I operate with a dual monitor setup, and find sometimes that applications do not work quite so
well as they do on a single monitor. For example, if an application is moved to a different
monitor, then dialogs continue to appear on the original one. This ‘feature’ affects some
commercial software too! I also sometimes lecture with a projector attached to a computer, and
almost inevitably the projector does not work with the same resolution as the laptop or

124

computer monitor, and some trials are required to make sure that fine details continue to show,
for example pastel shades may not render so well on the projector.
 ClearWin+ does not have any specific features that deal with the multiple monitor case, and
so you are thrown back into the arena of Windows functions, for which there is no help
generally in the ClearWin+ documentation, although with a great deal of foresight all of the
Windows functions and the names of their parameters are defined in the .INS files (or
equivalent .MOD files), so that once you get the hang of using the functions they are easy enough
and work with Fortran.
 The problem of lacking documentation is that you may not even know that a function exists
at all. One way of discovering whether a function exists is to look at the .INS files, and then
follow up something that looks interesting or relevant in the webpages maintained by Microsoft
for the Microsoft software development network or MSDN.
 The projectors installed in university lecture theatres and large auditoriums are usually much
higher resolution and with far better colour rendition than portable projectors or those in
seminar rooms or meeting rooms. Sometimes you will find that meeting rooms are equipped
with what is basically a fancy TV screen to which you connect your computer rather than using
a projector. The issues are still the same as far as programming is concerned, but you will find
that a hand-held laser pointer does not show up on the TV screen type, and may be too weak
for the lecture theatre screen. (Pointers that are bright enough for large lecture theatre
projection can potentially damage eyesight. My advice is to not even try.)

13.4 Working away from ‘home’ or without the Internet

If you rely on the internet for up to date help information, then a user who is working without
the requisite connection may be left stranded. Nowadays, the era of great big user manuals is
behind us, and anyway, who carries them on their travels? It pays to have at least basic help
integrated into the application itself, with only updates online. It may then be useful to permit
updates to be downloaded when there is a connection.
 Something similar applies to user authorisation that requires an internet connection. None of
my software has ever needed that, and the only time I have ever used a password is to stop
casual or accidental alteration of data where a publicly-accessible password is all that it takes
to prevent accidents. PASSWORD is an option with the %rs edit control, where the characters
typed appear onscreen as asterisks.

125

14 Inputting and editing tables

The whole business of creating and editing tables of data reminds me that this is one of my least
favourite areas of Windows programming and of using ClearWin+. Traditionally, the input to
many Fortran programs (including mine) was basically a set of tables. Some programmers think
that while using Windows, the user should basically be creating inputs using dialogs in which
this they can create those tables. In my view, that is to miss the whole point of Windows and a
graphical user interface in the first place.
 Near where I live there are many superstores, builders’ merchants and factories that operate
out of single-storey sheds with pitched roofs made up of steel frames with some sort of cladding.
Let’s take for example a typical frame with three bays just as I have sketched in figure 14.1.

1

1

6

7

9

10

2 3 5

4

8
2 3

4
5 6

7

8 9 10 11

Figure 14.1 A steel frame for a superstore building shown skeletally, with the joints numbered in red, and the
structural members in blue italics.

Just thinking of the steel framing, the structure might be thought of as having 9 joints, and 9
structural members. If we gave every joint a number and every member a number, then the
definition of the shape of that frame is a function of two tables: the first of these tables being a
list of the joint coordinates, and the second a table of the joint numbers at each end of a
structural member. I will forget for the moment the need to define the properties of each
structural member and also where the loads are applied and what magnitude they have.
Instead, I will just consider the need for the two tables.
 A graphical interface will simply never present the user with the need to enter data into those
two tables. The two tables will exist, however. They will exist in the internal database of the
program. They will exist when the data set is saved, and if the program loads the data set, then
it will be in the form of those tables. However, when creating that dataset with a graphical user
interface there may well be some interactive input starting from the user clicking perhaps on
the toolbar button that generates a typical frame where the user then goes on to define the span
and height by clicking on the image and responding to the appropriate dialogs. The user might
have a toolbar setting which adds another bay. It might be possible to click on a structural
member to set its properties via a dialog box, or to inspect them where the choice might be
another dialog box or perhaps some display on the status line.
 The only problem with a graphical interface lies in the resolution of the monitor which does
not permit a very accurate positioning of any particular joint, and so at some stage its
coordinates will be required, although only one joint at a time.
 Imagining the user interface is part of developing the Windows design concept.
Unfortunately, there are simply occasions when a table type of interface is absolutely necessary.

126

14.1 Looking at Excel for ideas

In the time that I’ve been using personal computers I have had the opportunity to use a variety
of different spreadsheet applications whose names in some cases have vanished into the annals
of computing history: Visicalc, Supercalc, Lotus 1-2-3, Quattro Pro. Microsoft Excel seems to
have swept them all into oblivion. I did for a short time (when first exposed to a spreadsheet)
think that it might displace programming with a high-level language for many routine tasks of
tabulating and listing, and indeed it has. However, there are computing tasks where it simply
cannot compete because it is so much slower.
 I think that it is worth taking time to look deeply at how the tabular input in Excel is actually
managed. I’m not sure that duplicating Excel is a useful way of spending one’s time, but looking
at it will not only reveal how clever and sophisticated it is but also to identify some of the things
that make it more intuitive to use particularly when simply entering a table of data.
 When Excel loads, it presents a grid, and along the top of the grid taking up the first row are
a set of letters and down the left-hand side taking up the first column there are a set of numbers.
These enable you to select an entire column or an entire row as well as referencing every single
cell by means of the column letter and the row number. You can click on any cell and enter
numbers or text or indeed formulae. What you see above the top row of the grid are some boxes.
In one of them you see the address is: letter and row number of the cell you have highlighted.
The next control along is basically a toolbar to accept or reject anything you edit. Then you have
a long data entry box where you can put in your numbers, text or formulae. Icons in the toolbox
allow you to accept or reject what you have done.
 Early spreadsheets only permitted this out-of-grid editing mode, and it stays there even in
Excel partly because users are used to it and also because the length of the data input box allows
formulae much longer than the size of the cell, which only really needs to contain the result.
 If you click on a column letter you can insert a column at that position or delete it. Similarly,
you can do those operations on rows. The grid in Excel can be scrolled and the mechanism for
scrolling is via scroll bars. It’s pretty clever, and many tables simply don’t need that degree of
flexibility – in Excel, the tables are flexible because by and large, it is about tables, whereas
tables in many other applications don’t need to be so flexible because the tables are about
something other than simply being a table!
 If you use Excel on a regular basis then the editing actions are not only straightforward but
become second nature. Users of your program, including yourself, will probably expect to edit
any table using the same sort of interface as one finds in Excel. However, a grid input for a table
of data will probably have a fixed number of columns. The column widths will probably be fixed
and so will the row heights. There won’t be any doubt as to what goes in any cell: an integer, a
real, or a text string. You may not need to be able to select a column, but you will almost certainly
need to select a row because it may be necessary to delete it, to edit it or to insert a new blank
row at that position, pushing all the later rows down one position in the table. There may be
comparatively few columns, but lots of rows.
 The first simple strategy is not to allow editing directly in the table grid but outside it in a set
of data input boxes corresponding to each column. You will still need the accept and reject
buttons and you will need a mechanism to pick a row for editing.
 If you permit in-grid editing, then you have a choice as to whether or not to provide the out
of grid editing facility as an alternative or not to provide it at all.

127

14.2 Out of grid (or off-grid) editing

If you only have out of grid editing, then the job in hand is basically to provide an appropriate
%rd, %rf or %rs data input box for each cell in a particular row and, apart from the ability to
select a row, the table that is displayed only has to be updated with numbers when the contents
of those input boxes are accepted. To make matters simpler it may even be possible not to need
a response from the table itself to a click selecting a row but instead to have the row selected in
its own data input box which could have a spin wheel control.
 Displaying the table is particularly easy if done in an entirely graphics mode using a %gr
drawing surface, since that simplifies drawing the grid lines, using colour, adjusting the font so
that numbers fit in the allotted space, and if the table is longer than can be drawn in the visible
part of the %gr field, simply draw the lot and rely on the inbuilt cropping facilities to not display
the parts outside the actual display area. Scroll bar use is also simplified, and scrolling can be
quite smooth. The issue with scrolling is to remember how much the grid had scrolled so that
rows can still be picked by mouse. This approach is even simpler as the entire dataset will fit in
the dialog.
 Figure 14.2 illustrates this approach in a program where coordinates are associated with
some points identified by a single letter. In practice, there are typically about six points, and
sometimes as many as eight, but inconceivably using the whole of the alphabet. In the first
version of this program the letters had to be sequential but now, gaps can be left in the sequence
by leaving out some letters, particularly I and O, which can be mistaken for 1 (one) and 0 (zero).
It is the only place in the program where table editing and entry is used.

Figure 14.2 Table data entry with out-of-grid number entry. The table itself is displayed in a %gr drawing
surface

128

14.3 Data interchange between programs

Data interchange between programs originated by the same person or organisation is probably
best done using unformatted files, but between different programs then a formatted and hence
person readable file is probably better and almost certainly if drawn by a third party program,
will be in a sort of comma-separated format.
 It is possible to launch another application such as Excel using START_PROCESS@ or
START_PPROCESS@, which can be done with a filename on the ‘command line’ that can later be
picked up easily by the originating program. Files up to a certain length may even still be in a
disk cache and therefore be readable at much greater speed than reading from the physical
device. On return, a file saved in that launched application may be read by your program, but
with all the caveats concerning its acceptability when it comes to reading it.

14.4 Listview (%lv) – setting up the grid

In-grid editing is possible in ClearWin+ by means of the %lv (listview) control, an array of data
input boxes, and because listview is primarily a way of displaying data, it is rather easier to
program out-of-grid editing, where you have the benefits of %il and %fl, and do not have to
monitor every keystroke.
 Essentially, however (and in my view), %lv is an abomination that will have you screaming
at the computer in absolute frustration, swearing that you’ll never touch it, or sometimes even
ClearWin+ ever again! The fundamental problem is that the listview control is reasonably good
at displaying lists, but interacting with it in a spreadsheet mode requires a great deal of
contortion to be done at a very low level in its callback function.
 Basically, listview displays a set or array of character strings, one string per row of the
control. Hence, if you want 10 rows for numeric input, and a row for the headings, you need an
array of 11 strings. What goes in each of those strings will control the way the information is
displayed, and as well as everything else, the length of text and a few control codes in the first
row will control the widths in the columns. Suppose that we want those 11 rows, and have
declared:

 CHARACTER*(80) ROWS(11)

Row 1 will sort out the widths of the columns and the column headings, so taking an example
of a handful of survey stations with x,y,z coordinates, we might have:

 ROWS(1) = ‘|Station|Easting (m)|Northing (m)|Altitude (m)’

we will get a particular spacing based on the length of text between the separators (| symbol).
In each substring, leading spaces are significant (but not very) and trailing spaces seem to be
ignored, particularly in the width calculation, so

 ROWS(1) = ‘| Station| Easting (m)| Northing (m)| Altitude (m)’

will get you slightly wider columns. That still won’t be enough to get you what you want, so
perhaps you need to use the mechanism for setting those column widths, which is to follow the
text in any of the cells with an underscore and an integer, then that integer will define the width
of the column in pixels.

 ROWS(1) = ‘|Station_65|Easting (m)_105|Northing (m)_105|Altitude’

 & //‘ (m)_105’

129

(Long layouts like this make it easy to run over column 72 and need to be continued). One other
thing is that a sign character after the underscore defines how the heading is arranged: + makes
the heading centred, - makes it right justified. Finally, I have used the | symbol as the separator
between fields. The first character in the string defines what the separator character is and so
it could be some other character if you wished.
 Now, we need to judge the width and height of the control to feed into the %lv control:

 IW = WINIO@ (‘%^lv[options]&’ iWIDTH, iHEIGHT, parameters, KB_FOR_LV_GRID)

When developing the grid, you will not be able to judge the size required, so anything will have
to do for the moment. Just make it large enough – say for a start 400 across and 200 down. On
my PC, provided that I don’t change the default font, each row seems to take 15 pixels, but minus
1 from the total, so 11x15-1 = 164 works perfectly – unless you use a manifest. The equivalent
that worked for me was 196 – 17 for each row plus 9. Don’t ask me why. Now, for some secrets.
Firstly, about those 15-pixel row heights. I measured them with an on-screen ruler! The one I
use is ‘Ruler by George‘, but there are others.
 There are 16 options, many of which are cosmetic. The ones typically of most use are edit_cells
and go_down_on_return. So, to evolve a grid that has column headers and labels down the
lefthand side that are not editable, the %^lv command format becomes:

 IW = WINIO@ (‘%^lv[edit_cells,go_down_on_return]&’ ... to be followed by the parameters.

The parameters, in order after the pixel sizes are:
• The array ROWS
• The number of rows (=11 in our case)
• An integer array (of length =10 in our case) with values 0.
• An integer code that tells ClearWin+ what sort of view is required, Values are 0 to 3

inclusive, but for an input grid we need the ‘report view’, which has the value 1
• The name of the callback function.

So, without further ado, here is an example:

 WINAPP

 OPTIONS (INTL, DREAL)

 PROGRAM LV_EXAMPLE

C ------------------

 INCLUDE <WINDOWS.INS>

 CHARACTER*(80) ROWS(11)

 COMMON /INPUT_GRID/ ROWS

 COMMON /COORDINATES/ X(10), Y(10), Z(10)

 INTEGER, EXTERNAL:: KB_FOR_LV_GRID

 DIMENSION ISEL(10)

 NROWS = 11

 iSEL = 0

 iVIEW = 1

 ROWS = ‘||||’ ! explained later in the text

 ROWS(1) = ‘|Station_65|Easting (m)_105|Northing (m)_105|Altitude’

 & //‘ (m)_105’

 IW = WINIO@ ('%ca[ListView example]&')

 IW = WINIO@ ('%^lv[edit_cells,go_down_on_return]&',

130

 & 400, 164, ROWS, NROWS, iSEL, iVIEW, KB_FOR_LV_GRID)

 IW = WINIO@ ('%lw%sf', LW)

 END

 INTEGER FUNCTION KB_FOR_LV_GRID()

C ---------------------------------

 CHARACTER*(80) ROWS(11)

 COMMON /INPUT_GRID/ ROWS

 KB_FOR_LV_GRID = 2

 END

14.5 Listview – setting the initial values in the rows

Now suppose that each row that follows comprises a capital letter and 3 REAL values, quoted

to 3 decimal places, then:

 SUBROUTINE SET_ROWS (I)

C -------------------

 CHARACTER*(80) ROWS(11)

 COMMON /INPUT_GRID/ ROWS

 COMMON /COORDINATES/ X(10), Y(10), Z(10)

 WRITE(ROWS(I-1),900) CHAR(I+63), X(I-1), Y(I-1), Z(I-1)

 900 FORMAT ('|', A, '|', F11.3, '|', F11.3, '|', F8.3)

 END

I used F12.3 because in the UK, using National grid coordinates, the x and y values could (just)
get into thousands of kilometres but no more, and are never negative, thus requiring at most, 7
places before the decimal point, the decimal point and 3 decimal places afterwards, making 11
in total. For many locations the string will contain blanks before the numeric values, but they
don’t matter. Elevations range from 0 to slightly over 1000 metres, and may include some
negatives but of much smaller magnitude, so with 4 characters before the point, the decimal
point itself, and 3 characters after, I got to F8.3. SET_ROWS is fine if I have start values x, y and z,
but if I do not, then I will need ‘||||’ as my string.

A completely blank row needs to have:

 ROWS(11) = ‘||||’

as an absolutely blank string won’t show at all.

14.6 Scrolling the contents of a listview control

If we supposed that there was an array of character strings in the background, each one
formatted as per the elements of ROWS, then scrolling up would be effectively to replace
ROWS(2) to ROWS(11) with the character strings from the background, and then CALL
WINDOW_UPDATE@(ROWS). The simplicity of this must be one of the strengths of listview.
 A further characteristic of the %lv control is that it can take a pivot and is therefore resizeable.
Unlike a drawing surface where the contents need to be redrawn when there is a resize event,
list view appears to understand resizing and if shrunk below the size where everything is
properly displayed (either or both horizontally and vertically) then scroll bars are drawn
automatically and are acted upon without programmer intervention.

131

14.7 Editing cells in a %lv

The cells displayed in a list view are individually selectable, and indeed may be edited. The
problem is that the changes are not persistent and once that cell loses the focus then it returns
to its original contents. What must happen is that the particular row character string must be
updated and once that is done it must be re-shown in the list view with CALL WINDOW_UPDATE@
(ROWS).
 The first step in the callback function is to find what cell we are in. Paradoxically, the
numbering begins at the second row, but, the row and column numbers are found by two calls
to the CLEARWIN_INFO@ function:

 IROW = CLEARWIN_INFO@ ('ROW_NUMBER')

 ICOL = CLEARWIN_INFO@ ('COLUMN_NUMBER')

Armed with that positional information, then if the first column is not editable, it is a matter of
setting the return value to 2 and returning.
 For any other cell, the next step is to examine the reason for the callback being invoked. This
is done using the function CLEARWIN_STRING@ putting the result into an appropriately long
CHARACTER variable CBR:

 CBR = CLEARWIN_STRING@ ('CALLBACK_REASON')

Now, you can test CBR. If it contains ‘BEGIN_EDIT’ then the callback function can return with

value 2. If it contains ‘EDIT_KEY_DOWN’, then you can find the ASCII code for that key NK with:

 NK = CLEARWIN_INFO@('KEYBOARD_KEY')

If the cell is to contain an unsigned INTEGER, then the only valid keystrokes are the numerals 0
... 9 inclusive, so if it is anything else, return from the callback, but this time with return value
4, which will discard that keypress. The ASCII numbers for the digits are 48 to 57 inclusive.
 Similarly, if the cell is to contain an unsigned REAL, then once again, only the numerals 0 ... 9
are immediately acceptable with an immediate return with value 2.
 However, in the case of a REAL number, a decimal point is acceptable, but only if there is a
single decimal point in the cell. The same goes for + and -, which not only should only occur
once, but should be at the beginning of the cell contents, regardless of whether the cell contains
an INTEGER or REAL.
 If you allow + and -, then they have ASCII numbers 43 and 45, and the decimal point is ASCII
46 (comma is ASCII 44 for Europeans) but you first need to obtain the currently edited text
from the function:

 CBE = CLEARWIN_STRING@ ('EDITED_TEXT')

where CBE is a CHARACTER variable of an appropriate length. You can check for duplicated
decimal points and correct, and similarly for the occurrence and position of positive and
negative signs.

 L = LEN_TRIM (CBE)

 K = 0

 DO 10 M=1,L

 IF (CBE(M:M) .EQ. '.') K = 1 ! decimal point exists

132

 10 CONTINUE

 IF (NK .GE. 48 .AND. NK .LE. 57) RETURN

 IF (NK .EQ. 46 .AND. K .EQ. 0) RETURN

 KB_FOR_LV_GRID = 4 ! reject this key

 RETURN

If the callback reason is given as ‘END_EDIT’, then the edited text has to be (a) converted into a
value, and (b) the character string for the appropriate row has to be edited appropriately and
then the listview box updated using:

 CALL WINDOW_UPDATE@ (ROWS)

The numeric value of the character string in CBE can be obtained by

 READ (CBE,*) variable name

And the text to be spliced into the CHARACTER string of the appropriate row is probably not CBE,

but rather the variable written into a different character string using an appropriate FORMAT.

Such a procedure may not be necessary for an INTEGER, where CBE will already be the right

format, but writing a REAL variable will give, for example, the correct number of decimal places.

You cannot do the READ if the string is ‘’, so that would create an error if you entered a cell and

skipped out without putting anything in, so:

 ELSE IF (CBR .EQ. 'END_EDIT') THEN

 L = LEN_TRIM (ROWS(IROW+1))

 INDEX = L ! initialise whole INDEX array

 BAND = ROWS (IROW + 1)

 KHAR = BAND(1:1) ! find the separator

 INDEX(1) = 1 ! INDEX is an integer array long enough

 K = 2

 DO 20 M=2,L

 IF (BAND(M:M) .EQ. KHAR) THEN

 INDEX(K) = M

 K = K + 1

 ENDIF

 20 CONTINUE

 IF (CBE .EQ. '') THEN

 TEXT = ' '

 GO TO 30

 ENDIF

 READ (CBE,*) VALUE

 WRITE (TEXT,'(F12.3)') VALUE

 30 CONTINUE

Finally, you need to update ROWS:

 ROWS(IROW + 1) = BAND(1:INDEX(ICOL))//TEXT//BAND(INDEX(ICOL+1):L)

 CALL WINDOW_UPDATE@ (ROWS)

 KB_FOR_LV_GRID = 2

 RETURN

A program using %lv should be assemble-able from the above fragments, See Appendix I.

133

14.8 Fancy effects with %lv

The first column in a listview control can be enhanced with an icon or a tick box, and the
appearance changed to any one of the 4 view modes. As well as INTEGER and REAL cell contents,
you can enter text or even formulae, but parsing formulae is well beyond the intentions of this
book. However, those enhancements are dealt with in the online help files and if you
understood the foregoing, then adding those enhancements should be plain sailing.

14.9 Grids of %rs, %rd and %rf

 A grid type of input can also be arranged by placing the requisite number of %rs, %rd and %rf
boxes in a rectangular array of %ob .. %cb boxes, and making the input cells have no border, for
example:

 IW = WINIO@ ('%4.11ob[thin_margin]&')

It is not particularly obvious that removing the data border should be part of %co:

 IW = WINIO@ ('%co[no_data_border,check_on_focus_loss]&')

Each cell requires its own %cb: 44 in all in the example above. It is therefore best to define the
input cell and its %cb in a loop or loops. Each variable does require an initial value, and an
appropriate initial value can be specified in such a way that it triggers ‘initially_blank’, as for
example, in the case of UK National Grid coordinates which are never negative, -1.0 might do.
However, as some altitudes might be negative, a larger negative number has to be specified for
altitude, and the same value might do for Easting and Northing, perhaps -1000.0.
 Cells that contain headings should use %`rs and would therefore not be editable.

 DO 100 J=2,11

 IW = WINIO@ (%`rs&’, CHAR(J+63))

 IW = WINIO@ (%rf// TESTER(X(J-1),-1000.0)//’%cb&’, X(J-1))

 IW = WINIO@ (%rf// TESTER(Y(J-1),-1000.0)//’%cb&’, Y(J-1))

 IW = WINIO@ (%rf// TESTER(Z(J-1),-1000.0)//’%cb&’, Z(J-1))

 100 CONTINUE

With:

 CHARACTER*(18) FUNCTION TESTER (VALUE, CRITERION)

 IF (VALUE .LE. CRITERION) THEN

 TESTER = ‘[initially_blank]’

 ELSE

 TESTER = ‘’

 ENDIF

 END

Unlike %lv where a mechanism is needed to initialize the ROWS character strings, this grid
approach may deal with the variables directly. Equally, it may be the case that using surrogate
variables is the approach of choice, because that simplifies the response to Cancel (Section
16.3).

134

15 Plotting graphs

ClearWin (without the +) was originally marketed as a separately-priced add on to the FTN77
compiler, although it eventually was rolled into the package, and as the system developed, the
+ was added. At some point a graph-drawing facility was also added to work with ClearWin+,
with a very basic set of functions supplied as standard, and the more advanced graph drawing
facilities supplied in another separate third-party package complete with its own manual. The
name of the graph drawing package was SimplePlot, and it was invoked by use of the %pl format
code. Eventually, and I’m not clear on when that was, the full SimplePlot stopped being
available.
 With the development of the 64-bit version of FTN95, Silverfrost undertook the development
of a more sophisticated version of SimplePlot which they called native SimplePlot. Not only does
the new graph plotting code offer a lot of options, but also it is drawn with GDI+, and therefore
has an extremely attractive appearance. It is however not fully developed at the time I write
this, and it does seem to me that for many purposes you might just as well draw your own
graphs and charts in a %gr drawing surface whether that is a drawing surface on the client area
of a master window, or as part of a dialog.
 Engineers and scientists are probably most familiar with a graph with linear or logarithmic
cartesian coordinate axes, but there are many more ways of graphing data. The Silverfrost
website contains a link to Simfit and Simdem, packages provided as open source by their now-
retired author, Bill (W.G.) Bardsley, formerly of the University of Manchester, and no doubt
even if you do not require the whole package, you may well find a routine or routines that you
find useful in your application. Acknowledgement then would surely be required, both in your
Help file and perhaps also in your About dialog box.
 So there are a number of choices to help you draw graphs.

15.1 DIY graphs and charts

One of the great things about doing something for yourself is the total control you have, and
what is more, the ability you have to tailor the plot appearance to the needs of your analysis,
and to produce hardcopy, especially when that is integrated with text.
 You probably can find the ranges within your dataset to plot by means of straightforward
Fortran, but it is always a little trickier to determine the ranges for your axes. Routines for this
and many other purposes can be found freely distributed on the internet, and in commercial
subroutine libraries. If you do it yourself, or are looking for ideas on how to present the results
your program has produced, then you could do worse than spend some time reading the books
by Edward Tufte on presenting information in graphical form. There are 4 books, all self-
published by the Author and not cheap. I have given a reference to the titles and to Tufte’s
website in an Appendix. I sometimes find Tufte to be bombastic and over-opinionated, but his
writing gives you food for thought. In particular, Tufte is disparaging about the textures applied
to monochrome graphics which he calls ‘chart junk’, forgetting that it was once all there was
that could differentiate areas on a monochrome device, and that various forms of cross-
hatching used by engineering draftsmen when using pen and ink don’t necessarily work so well
on raster devices as they do on vector ones. However, colour is almost always better, even if it
is only greyscale.

135

 Now suppose that you have plotted a graph as what Excel might describe as a ‘scatter plot’,
and that you wish a user to be able to click on the graph and return the x,y values. You must not
forget that the mouse cursor has to return the pixel coordinates, and almost inevitably, that
means that a conversion to the units used on the graph has the potential to produce irrational
numbers with a great many decimal places of apparent precision, but accuracy limited to the
nearest pixel, if that. When I have had to program such things, I have found that it is sometimes
better to return the value of the nearest plotted point, if that is within a few pixels, or if in a
cluster of points to use some sort of averaging on a selection of the nearest points. Weighted
averaging using a gravity model (i.e. the weights determined relative to the inverse square of
distance) can be useful.

15.2 Symbols and lines

The standard graphics primitives in ClearWin+ are the rectangle and ellipse, but on a graph you
will normally want to draw circles and squares. There is then the choice of filled or simply
outlined, and then a choice of colour Remember that on screen small radius circles look very
blocky. Other symbols common on graphs include *, + and x, but it is difficult to use letters from
a font and much better to use polylines or polygons to draw them. You might find the philosophy
of the arrow drawing in Appendix A useful if you can create the necessary relative coordinate
lists for the markers you want.
 Even on hardcopy, you can import bitmaps as the graph symbol markers, but most bitmaps
are ‘square’ and do not have transparent backgrounds like icons do, and in addition you will
need numerous sizes of each to cover the different DPI settings.
 ClearWin+ does permit various line types to be used (look at SET_LINE_STYLE@ and
associated routines mentioned in the help file), but they work generally better when a polyline
is used rather than a collection of short segments.

15.3 Scales, ranges and intervals

Something to think about is the range of values for each axis, and whether or not the scales have
to include the origin (0,0). Finding the ranges is easy enough, but deciding the intervals is
trickier, as you don’t usually want so many labelled lines on each axis that the labels run
together, and for most purposes, you will want useful steps.
 For log scales, it is a good idea to select the range so that the axis/axes covers complete log
cycles. When that is done it is only necessary to label the multiples of 10 where there is more
than one cycle, and the sequence of tick marks does the rest.

136

16 When I was younger, so much younger than today ... Help
12

Help for users of your application program comes in a diverse variety of ways. Outside of the
application there are training courses, telephone helplines and printed manuals, and within the
program the help system can also take a range of forms.
 At one end of the spectrum there is the complete compiled hypertext help file run by the
HH.EXE standard program in Windows (see right back in Chapter 1). This has several
disadvantages, most notably the delay while the hypertext help program and .CHM file load, and
then the time taken for the user to find the precise entry that relates to their problem. The need
to hunt through the CHM file may be reduced by jumping to the right keyword in the helpfile,
which is a facility within ClearWin+. Then, it is possible to program pop-up dialogs using some
basic facilities of ClearWin+, which is likely to launch more quickly than using an external
facility, although dialogs almost always contain less information than the complete contents of
a helpfile.
 The real downside of using a .CHM file is not the time taken to load it, but is that you need a
helpfile compiler to produce it. That also requires a learning curve, and although there are
freeware options, there is usually a cost to obtaining that software.
 If a delay is acceptable, an alternative approach is to produce an HTML file instead. ClearWin+
has facilities for loading and displaying HTML files. A local file will load quicker than one
downloaded via the internet, but if the latter is kept up to date, with errors corrected and
descriptions enhanced, then the approach may have its merits.
 Naturally, a well-designed interface, with dialogs that users find intuitive to use, reduces the
need for help in the first place. That means not reinventing the wheel but instead, using
shortcuts and actions that the user will already be familiar with. It also means designing icons
for toolbars that for common actions are recognisable from other commercial applications and
where they are highly specific to your program that they are in fact meaningful.
 Finally, there are ‘tool tips’, or help messages attached to particular controls that are
presented after a short delay when the control experiences a mouseover event. Not every
control benefits from having a tooltip, and indeed, the badly timed presentation of tooltips may
be a greater annoyance to the user than a help! It is therefore worth considering whether to
make the display of tooltips optional. Tooltips are particularly useful for the options in a
toolbar, because the controls do not have an accompanying text description, nor the legend that
one provides for a button.

16.1 Tooltips

It is possible to provide help for particular controls in toolbars, menus and dialogs in the form
of pop-up messages. The relevant controls are %bh (bubble help) and %th (tooltip help) with a
third format code %he that assists in controlling where the messages appear. It is possible to
arrange for the help messages to be associated closely with the control in question, at the
cursor, or in a status bar, and to be invoked by various means, including to a mouseover event,
with or without a delay.
 In my experience, it is a mistake to provide too many controls with help in this manner,
because if the action captions are helpful and relevant a short help string may not be long
enough to provide a significant extra aid to the user. Where this form of help is most useful is

12 John Lennon was 25 when he wrote Help! – with some ‘Help’ from Paul McCartney, apparently.

137

in connection with toolbars, especially those that have only icons and no captions. I prefer the
%th[ms_style] with a 300 ms delay before it appears.
 A factor that needs to be considered is that these help messages popping up when they are
not wanted can be distracting or even annoying to an experienced user, and therefore a useful
menu setting is to turn them off, or to restore them for a different, perhaps less experienced,
user.
 The guidance about programming these format codes in the online help files is thorough and
so does not need to be repeated here. My contribution is to suggest that these help utilities are
kept to the minimum, particularly at first, and only extended when the need is shown.
Sometimes the solution is more likely to be a change in any action words on control buttons,
labels on radio buttons and tick boxes, or even redrawn icons. The answer is not having pop-up
help on every control, and especially not to provide the help whether a user needs it or not.
 My recommendation with regard to tooltips is that you use them quite sparingly, and initially,
only on your toolbars until you have had several reviews from other users about what they find
easy and what they find difficult or confusing about your application and react to that feedback
rather than conform rigidly to an idea you had at an early stage.

16.2 Hypertext and the internet

ClearWin+ can read and write some types of hypertext files, and a great way to keep users
informed of changes to or issues with your application is to refer them to hypertext files kept
on your own fileserver – until an internet connection is lost! Keeping files locally solves that
problem but in turn generates the issue that files may need some mechanism to keep them up
to date.
 The %ht format that uses hypertext in a dialog is described in the online help file along with
all the associated functions. There is also the alternative %wb which you may prefer. The
difference between the two is that %ht is native to ClearWin+, whereas %wb uses the Internet
Explorer engine.

16.3 Accelerator keys

Accelerator keys are sometimes called shortcut keys, and include not only single keys such as
the function keys on a PC keyboard but also ‘chords’ where several keys are pressed
simultaneously, usually in combination with Shift, Ctrl or Alt. ClearWin+ can associate these
accelerator keys to menu or toolbar commands. One method is to define the accelerator keys
when for example a menu system is being generated. The other method is to switch on or switch
off the accelerator keys with subroutine calls.
 The subroutine call method allows you to temporarily switch off accelerator keys while a
particular dialog is operative and then to reactivate them on exit from the dialog.

Subroutines: The subroutines are named ADD_ACCELERATOR@ and REMOVE_ACCELERATOR@. The
routine ADD_ACCELERATOR@ has three parameters and REMOVE_ACCELERATOR@ has two.
 In the case of ADD, the parameters are:

• the handle of the window which you can obtain using %hw when the window is created.
If a previous accelerator definition for this key in this window exists, then it is removed

• the key or key combination
• a callback function, which cannot be a standard callback

138

The key or key combination name is given in a prescribed way within quotes as a standard
character string, with examples such as: ‘Alt+Esc’, ‘Ctrl+Shift+Del’, ‘Esc’, ‘Alt+Enter’, ‘F1’ and
‘Ctrl+F3’. In the case of REMOVE, the two parameters are the first two from ADD.
WINIO@: You can associate the accelerator keys with particular callback functions using the
%ac format code when building a window with WINIO@, as in:

 IW = WINIO@ (‘%ac[F1]&’, KB_HELP_FILE)

Accelerator keys can also be associated with specific %mn items by placing the accelerator key
or key combination after the name of the menu item, with the item and key combination
separated by a TAB code (represented by ▮below, as in:

 IW = WINIO@ (‘%mn[Help[File▮F1]]&’, KB_HELP_FILE)

Clearly, the accelerator keys relate to the same callback function as the menu item.
 If you examine a number of commercial applications, you will discover that there is an de
facto standard for some of them, particularly Ctrl-P to launch the Print option in the File menu,
or F1 to invoke Help. If you define your own standards from scratch, you will make it more
difficult for users to become confident or adept in using your program. Indeed, as a user
yourself you will soon discover the pitfalls of an unconventional set of accelerator keys!

16.4 Help yourself

13

At some stage you will discover that a Windows program in Fortran and ClearWin+ runs to
many subprograms, and managing them all will be a problem. The answer in part is not to try
and lump everything into the same source code file, as we had to when programs were on 80
column cards, and also not to have one source code file for every subprogram as that simply
exchanges one sort of problem with another.
 I became used to having one source code file for each subprogram when I first started using
a personal computer with floppy drives and editing my programs with WordStar in ‘non-
document’ mode, but that was when my programs might have only had a half-dozen or more
files and routines to contend with.
 Plato does a superb job of managing a project with multiple source code files, but the issue is
in finding particular routines across all of those files. What I do and have found works for me is
to limit a source code file typically to about 2000 to 2500 lines and the appropriate number of
subprograms that fit in that length. At the beginning of each source code file, I have a list of
comments that name each subprogram and give the line number where it starts. During
program development, these line numbers change regularly and there is no way of hyperlinking
them, so it is a question largely of updating the numbers periodically. Provided that the line
numbers are right to within 10 or so, and you know that you are working on that file, it probably
does not matter terribly much, and only when the code is comparatively stable do you need to
produce the definitive list.
 My next problem is in finding which file contains a routine that I’m interested in. The method
that I’ve found useful to cope with this is to copy each gazetteer section from every source code
file and put them in to another file which I have called WHEREIS.FOR. Again, during program
development, the contents of WHEREIS.FOR have to be updated but that is a matter of cut-and-
paste of a block of lines.
 To reduce the number of times that I have to update the line numbers, I usually find it
preferable to put routines in development at the bottom of any particular source code file.

13 Tom Jones? 1968 was a great year for pop ...

139

Another trick that I have found very useful is to use an in-line comment after every subroutine
is called that tells me which source code file contains that subroutine.
 I also maintain a file called WHATIS.FOR that lists the variable names from my program and
explains what they represent. This is a hangover from the days when I would provide that
information in every subprogram, but doing the old practice makes the source code files very
long indeed.
 I have found that once a particular application has many subprograms and source code files
that it is a mistake to develop something within the framework of the complete program.
Instead, I do the development of something (for example like a new dialog box) in a stand-alone
program and only incorporate it in the main application when I am content that it works
reasonably well. Attempting to debug errors that you have introduced into several areas in a
really big application can be a nightmare.
 Of course, you must follow your own experience, programming habits and methodology as
suits you best, but I certainly have found that I needed a lot more discipline given the length
and complexity of a Windows GUI relative to an old-style Fortran program.

16.5 Undo and Cancel

An important feature of most Windows applications is that we can Undo a previous command.
If you wish to implement Undo, then you have to implement the reversal of selections in some
way. No doubt there are some really fancy programming solutions to the problem, but
essentially it boils down to keeping a record of what was done and programming the means to
reverse those changes. It isn’t always necessary to implement Undo, so for example, if there is
a dialog in which a graphical object can be set to one of a small set of colours, then rather than
Undo to revert to a previously selected colour, the user can simply revisit the dialog. Where it
is necessary is when the user performs an action that has far-reaching consequences that
cannot be reversed simply by selecting a simple option. One example might be when the user
deletes a main branch of a family tree, say by wiping out Queen Victoria from a royal family
tree. To revert to the previous status quo by re-inserting all of her descendants would be a
mighty job.
 I don’t often meet this in things I program, but where I have had to, I have got over it by
frequently saving my entire dataset in files that are systematically named with the names held
in a list, and Undo simply means reloading those files, perhaps after re-initialising all the arrays.
Alternatively, the Undo information can be held in memory.
 Most dialogs have a Cancel button. Note that if the user has made any changes to variables or
selections, then unless steps are taken to revert to the original values, then your Cancel will
simply act as a sort of perplexing Accept !
 There are two approaches, and the one I prefer is to use a set of surrogate variables that are
given initial values on entry to a dialog, and then those variables are used in data input boxes
etc. Then, the original variables retain their initial values if the dialog box is closed or Cancelled.
It does mean that if Accept is selected, the WINIO@ return code must be checked, and if set, the
original variables are updated.
 The alternative is to save the initial values into the surrogates on entry to the routine, use the
original variables in the dialog, but be prepared to revert to the values held temporarily in the
surrogates if Cancel is selected or the dialog closed other than with explicitly accepting the
changes.

140

17 Startup and closedown

ClearWin+ provides two format codes: %sc and %cc specifically to invoke through their
callbacks’ activities that need to take place as a window opens (%sc) and when a window closes
(%cc). The format codes can be thought of as mnemonics of start-up control or start-up callback,
and closure control or closure callback. Both of these format codes require a callback function.
The closure control format code may be invoked in one of two ways or even both: before the
window closes (%cc) and after it has closed (%`cc). The start-up control is executed at
completion of the appropriate window’s setup.
 Ordinarily, the start-up control is required for a main program window, but it was shown
earlier how useful the start-up control could be to launch an invisible window that executed
something and then closed itself down by having a callback that returns the value 0.
 One particular use for the closure control is to give the user a chance to save their work if
they have not already done so. Matters are rather more complicated than they might seem at
first, but please be reminded that when the standard callback ‘EXIT’ is invoked the program
stops dead in its tracks. This is simply annoying if it happens to you during program
development but especially with a commercial application it may result in users raving and
issuing death threats! The converse problem is that the user is asked repeatedly whether they
want to save their work and that can also be fairly irritating.
 Sometimes users are called away from work in progress and typically at the end of the day
may shut their computer down without saving their work. ClearWin+ has an answer to this as
well, and that is via the exit Windows (%ew) format code. Like the start-up control and the
closure control, the exit Windows control must have a callback.
 If you have divided your main window definition WINIO@ controls into groups, each of which
has a subroutine dedicated to it, then it is logical to make one of those groups cover start-up,
closure, and exit Windows. Such a subroutine will be comparatively short especially in
comparison to subroutines for menu bars or toolbars, and it will be seen to be quite convenient
to park one or two other controls in there. Those controls could include handling the caption,
setting up the window properties and even some default colours and parameters.
 Something that is often forgotten is that there is a difference between the Fortran start-up
and the ClearWin+ main window start-up, and indeed, there is also a difference between main
window closedown and Fortran closedown, although novice programmers anxious to get into
windows may make the two start-ups nearly coincident and the closedown especially so.

17.1 Fortran start up

There are two things that are very effectively done at start-up, and they are to initialise all the
variables used in the program and to check to see if the program has been launched by the user
clicking on an associated data file.
 Initialisation, as pointed out earlier in Chapter 2 is better done with a subroutine than with
BLOCK DATA, not least because BLOCK DATA is rather frowned upon in modern standards, but
also because having a subroutine that initialises data means that it can be called at any time to
reinitialise data for a subsequent analysis without having to close the program and restart it. If
the initialisation takes a long time, then it should be moved from the Fortran start-up to the
main window start-up because then the visual clues can be given to the user that something is
still actually going on with your program and it hasn’t just hung up.

141

 If your program has been launched by the user clicking on an associated data file then a
command line is created that can be interrogated by your program, firstly to see how many
items it contains, and if it contains two, then the first is the name of your program and the
second is the data file. If the command line only contains one item, then the program has not
been started from a data file but from an icon or menu in Windows. It is quite possible for a user
to start your program by name from a command line utility such as Windows Power Shell, in
which case it can have more than two items, but that would be relatively unusual and I suggest
that it is not a good idea to rely on that mode of starting a program and therefore you should
not be looking for additional items such as options or other filenames - unless of course, your
program is started from another program that you have written, in which case the command
line can contain whatever you want.
 FTN77 and FTN95 provided facilities for interrogating the command line long before they
were incorporated in the relevant Fortran standard, and as some of those standard conforming
functions are also present in FTN95’s library, you have a choice of which to use.
 The routines are listed under the tab ‘Command line parsing routines’ as part of the ‘FTN95
library’ and outside of the ClearWin+ entries. I suggest using either CMNARGS@ or
COMMAND_ARGUMENT_COUNT and then proceeded as explained above.

17.2 Main window start-up

In respect of the main window in your application, an important task at start-up is to initialise
your variables and set important defaults such as the initial grey codes for your menu and
toolbars. If you set those codes on entry to a subroutine that sets up your menu and toolbars,
you make those routines rather more complicated than they absolutely need to be. However, as
always, the choice is yours to fit in with your programming style.
 It is possible to associate certain filename extensions with your program in such a way that if
a user clicks on one of those files it will start your program. The mechanism for handling this
case is that when your program starts it appears to start as if it were invoked by name with the
file name following on a sort of virtual command line. Programs can of course be started in this
way from a command window with the user typing in the program and a filename, so although
it would appear logical to assume that the filename was related to a file that definitely exists
(because the user clicked on it), that may not be the case. Moreover, there is no guarantee that
the file is actually a datafile for your program. The checks that you need to undertake are
described below in section 17.4 along with the mechanism for reading that command line
regardless of whether it was typed in explicitly what is implicit and associated with the user
clicking on the file name in a directory window.
 If your application is password protected, or protected by some other sort of a code, you can
either do the check before the main window is drawn or after the main program window has
been drawn fully. In the former case you have to go through the password check before
beginning to specify the master window WINIO@ calls, but in the latter case you can do it as part
of the start-up control.
 A note in the online help file points out that the start-up control may allow the program to
display initial %gr data, but also points out that if the drawing surface receives a RESIZE
message, then that might be received before the %sc callback is called.

17.3 Main window close down (and exiting dialogs)

Due to a foible in the way that FTN95 and ClearWin+ progressively closedown various
subroutines, along with the asynchronous nature of Windows itself, it is quite possible that

142

WINIO@ attempts to return a numeric code and assign it to a variable that has already been
discarded, i.e. in:

 IW = WINIO@ (...

it is the variable IW. If IW is a local variable in a subroutine the memory location associated with
it on the stack may not be accessible. When this situation arises, a Fortran error occurs, and the
program terminates abruptly with a Fortran error that you may not wish a user to see and
before certain desirable closedown routines have been executed for example saving the user’s
work. There are various ways around the issue which you can adopt according to your
preferred programming style. They include:

• a global save, specified as a compiler option to make all variables static
• a local save, making the WINIO@ return variable static
• putting the return variable in a COMMON block listed early on in the program so that its

memory is released only at a late stage.

While the problem is usually quite rare, it will occur more often if your programming style
divides the WINIO@ function calls across a number of subprograms. Ordinarily, dividing the
WINIO@ calls in this way may not be helpful anywhere other than in the master window
definition, but it can still occur. If during program testing the issue occurs then the fastest
temporary expedient is simply to make all the local variables have static addresses by means of
a compiler option (including a source code OPTION directive).

17.4 Fortran close down

if you remember that Fortran closedown does not immediately have to follow closure of the
ClearWin+ main program window, then you have the opportunity to check if files have been
saved and suchlike. Of course, there is nothing to stop you opening a new master window and
effectively running a second application from the same Fortran executable. I have a program
that offers the user the choice of different toolbar styles. The nature of ClearWin+ is that the
toolbar format is decided when the master window is formed. Choosing a different toolbar style
means closing one master window and reopening a master window with the new toolbar style.
In my experience, there is a substantial difference in the time it takes to reopen a window
changing from %tb to %ib or vice versa, or using different icons in a %tb or image bar style. In
that particular program I get over this by re-showing the initial splash screen. The process is a
little clumsy, but at least the user is given some choice.

17.5 Exit Windows

There is a format code %ew with a callback that is executed should Windows be in the process
of shutting down. This callback might be the same one as is associated with the closure control
%cc for the main window, thus giving the user the opportunity to save their work before
window shuts down taking the application with it and losing any edits to date.
 If possible it is advisable to minimise the work that has to be done in the callback to either
%ew or %cc, particularly in respect of saving files, which is why I always recommend that after
files have been opened and written to the Fortran CLOSE statement should be executed. I found
that the discipline of using the close statement is also useful for files that are opened for reading.
If you follow that advice and close the files as soon as possible after they have been written to,
then the only files that have to be saved on exiting windows are those where the dataset is
currently in use and has not already been saved.

143

If the same callback is used for both events, then it may not be necessary to remember to update
the MRU list (see the following Section 17.8).

17.6 Programs started by clicking on a registered datafile

You may well remember the facility to add filenames to a ‘command line’ when invoking a
program in the pre-windows days, so that the line became:

Program_name input_filename output_filename

An FTN95 Windows program starts with a ‘virtual’ command line. If it only has one item in it,
that will be the program name. If, on the other hand, there are two items, that means that the
user clicked on an associated filename, and the program was started that way – the second item
being the filename.
 It is therefore desirable at program startup to inspect the virtual command line. In principle,
the second item should be the filename, but if the program has been spawned by another
program (as with START_PROCESS@ or START_PPROCESS@) it can also have optional parameters,
additional filenames and so on, and this latter case does need consideration, as the second item
may then not be a filename.
 FTN95 has several (11) library routines for inspecting the command line, both of its own,
routines that were introduced before Fortran caught up, and some routines that are now part
of the Fortran standard.
 If the program was launched by a user clicking on an associated filename, it is usually safe to
assume that the file exists, but if the command line was typed, explicitly, at a command prompt
or from Windows PowerShell, or indeed if the program was spawned, that may not be the case,
and prior to attempting to OPEN it, it is wise to check if it exists and indeed, is openable. Once
opened, the contents may be read, but they still need read or other errors to be trapped.
 Your application may set file associations for which you need the program name, and then
call DEFINE_FILE_EXTENSION@:

 CALL GET_PROGRAM_NAME@ (PNAME)

 K = DEFINE_FILE_EXTENSION@ ('.BUZ', PNAME, 'Busy Bee', 0, 1)

Alternatively, file extensions that are associated may be set up by direct inclusion in the
Windows Registry or a .INI file, with the former potentially an option at the time of program
installation.

17.7 Dropping files instead of Open

ClearWin+ has a format code %dr that provides a callback function to be called if the user does
a drag and drop operation on a file, and drops it on the relevant window. Multiple files can be
dropped, in which case the callback is repeatedly invoked.
 At program startup, it may be sensible to allow drag and drop into the main program window,
but unless there is code to handle the situation at what might be inappropriate points, it is
probably best to put %dr into a dialog connected to a menu or toolbar command which is
greyed-out at entirely inappropriate moments, and where space is provided to allow the ‘drop’
(together with a caption on the lines of ‘Drop file(s) here’).
 It is safe to assume that dropped files actually exist, and once opened, their contents may be
read, but they still need read or other errors to be trapped, preceded by a check that the file is
actually relevant.

144

17.8 Configuration files

Early versions of Windows expected programs to have their own configuration files, normally
files with the extension .INI, and typically with the same name as the application itself. Even
Windows had its own WIN.INI file. Later versions of Windows expect the system and all the
applications to store their configuration information in a file called the registry. There are
advantages to both systems.
 An application compiled in FTN95 and using ClearWin+ as its interface to Windows can
usefully use the registry to store information that Windows needs to know about it, but for the
Fortran user, a .INI file is still useful. One particular use for such a file is to store the most
recently used (MRU) file list, and because reading and writing ordinary files is a standard task
within Fortran, and entering and deleting items in the registry requires the use of routines
unfamiliar to the Fortran user, then the .INI file approach is often simpler.
 Reading the MRU filenames is something that can easily be done between Fortran start-up
and ClearWin+ main window start-up, and especially since that information may be required
very early on in program execution. In early versions of Windows where filenames are still
restricted to the 8.3 format (a maximum of eight characters in the main name and three
characters in the filename extension), then a shortlist of MRU files was typically added to the
Files menu. However, as filenames became longer and the use of nested folders or
subdirectories became more common, it has become much more usual to have an ‘Open recent’
or ‘Recent files’ menu item for the user to pick from the MRU list in a dialog. A dialog in any case
allows for more MRU files to be listed, to include more of the directory path, and possibly to
even present the MRU list with associated dates. In view of the advantages of a dialog over a
dynamic menu then should you wish to use the latter the appropriate instructions are given in
the FTN95 online manual.
 If a dynamic menu is used then the MRU list needs to be read before main window start-up,
but if a dialog box is used, the MRU list can be read during the callback from a %sc format code
action. When reading an MRU list from a file and presenting it to the user it is worth checking
that the file exists using the FTN95 routine FEXISTS@, to avoid the case where a file has been
deleted in the interim, or saved on removable media that is no longer connected. The choice is
then whether to present the missing file’s name, or to inform the user that the file cannot be
opened (or found).
 MRU lists need to be updated at closedown, and in an SDI application or closedown of one
window in an MDI application at the time the file ceases to be used.

17.9 Window styles

My advice is to keep things as simple as possible. If you have corporate colours, logos etc, they
need to be discreet. Fancy coloured backgrounds not only look out of keeping with most styles
in different versions of Windows, but such backgrounds also often make an application look
cheap and amateurish.
 For a main window, especially one where most or all of the client area is a drawing surface,
the standard border is too wide, and no_border looks better, but the window does need to retain
its frame. At the risk of repetition of points made earlier, a status bar helps balance the
appearance of a borderless drawing surface client area, and is useful in its own right.
 Some pop-up dialogs may be drawn without a frame or caption and then they need to be
volatile as well so that if they lose focus they disappear.
 Now that the majority of PC and laptop screens are widescreen format, toolbars on the left
can use some of the lateral extent of the screen more effectively than in a squarer format. I have

145

one application that tests the aspect ratio before deciding on a horizontal or a vertical toolbar.
Deciding and implementing the either-or approach can be highly effective with toolbars that
contain few options. At the present, ClearWin+ does not support a repositionable toolbar, so
the decision has to be made at startup.

17.10 Initial splash screens

Bearing in mind the note that a %gr drawing surface might receive a RESIZE message before the
%sc callback has been executed, it might be useful to distract a user’s attention so that they do
not resize the master window is one of the first actions. Such a distraction can be provided by
means of an initial splash screen presented in what appears to be in advance of the main
window being drawn. In any case, it is not unusual for an application to use that initial splash
screen to show the user that something is going on if the main window takes a long time to load.
Most users will be very familiar with splash screens as they definitely appear with many large
applications such as those within Microsoft Office. Very quick loading and simple applications
are better off without that initial splash screen with typical examples being Windows
accessories like Calculator.
 Some commercial applications like CorelDRAW! make use of an initial splash screen to allow
the user to select configuration options and also to present the MRU files list. As always, the
option is yours when deciding the look and feel of your program.
 If an application is intended to run on a variety of computers with very different screen
resolutions, then it may be desirable to have more than one format for an initial splash screen
decided on the basis of what the particular computer’s screen resolution is, so that any bitmap
image is sized appropriately.
 A very effective technique is to make the splash screen progressively fade away which is done
by using a timer and a routine to make the splash screen progressively more transparent. A
splash screen is in any case only a special kind of dialog, typically not having a caption bar so
that it cannot be moved. It is a mistake to keep it this splash screen in view for too long or to
make it disappear too quickly. In the example below the total duration with which the splash
screen is displayed is taken as 2 seconds, and the opacity is decreased in 255 steps thus making
the progress appear very smooth. (The SetWindowOpacity function was provided by a user on
the Silverfrost forum, and only works in 32-bit Windows).

 logical function SetWindowOpacity(hWnd, alpha)

C --

! Set opacity level for a window (call after window creation) -

! automatically sets appropriate extended style and sets opacity

! from 0 (transparent) to 255 (no transparency).

 use mswin

 integer, parameter:: WS_EX_LAYERED = Z'00080000'

 integer, parameter:: LWA_COLORKEY = Z'00000001'

 integer, parameter:: LWA_ALPHA = Z'00000002'

 STDCALL SetLayeredWindowAttributes 'SetLayeredWindowAttributes'

 & (VAL, VAL, VAL, VAL) : LOGICAL*4

 integer, intent(in):: hWnd

 integer, intent(in):: alpha

 integer:: attrib, i

 ! Get current window attributes to ensure WS_EX_LAYERED extended style is set

 attrib = GetWindowLong (hWnd, GWL_EXSTYLE)

 if (IAND(attrib,WS_EX_LAYERED) /= WS_EX_LAYERED) then

146

 i = SetWindowLong(hWnd, GWL_EXSTYLE, IOR(attrib, WS_EX_LAYERED))

 end if

 ! Set layered window alpha value

 SetWindowOpacity = SetLayeredWindowAttributes

 & (hWnd, 0, CORE1(LOC(alpha)), LWA_ALPHA)

 end function SetWindowOpacity

 SUBROUTINE SPLASHER

C -------------------

 IMPLICIT DOUBLE PRECISION (A-H, O-Z)

 INCLUDE <WINDOWS.INS>

 INTEGER, EXTERNAL :: KOUNTER

 CHARACTER*(60) COMPUTERNAME

 COMMON /MACHINE/ COMPUTERNAME

 COMMON /SPLASH/ ICTRL

 COMMON /Spl_Hnd/ iSplash_Wnd, jSplash_Wnd, NoInc

 COMMON /DPI/ IXDPI, IYDPI, ID_Platform,

 & Major, Minor

 STDCALL SetProcessDPIAware 'SetProcessDPIAware' : LOGICAL*4

 LOGICAL IOK

 SAVE

C ---

 CALL GET_OS_VER@ (ID_Platform, Major, Minor)

 iHDC = getdc (0)

 ixdpi = GetDeviceCaps(iHDC, LOGPIXELSX)

 iydpi = GetDeviceCaps(iHDC, LOGPIXELSY)

 IF (IXDPI .EQ. 96 .AND. IYDPI .EQ. 96) THEN

 COMPUTERNAME = 'STANDARD'

 ELSE

 COMPUTERNAME = 'LARGEFONTS'

 ENDIF

 ICTRL = 1

 NoInc = 255

 Delta_Time = 2.0D0/255.0D0

 IB=WINIO@('%ww[no_border,no_caption,no_maxminbox,topmost,'//

 & 'toolwindow,no_frame]&')

 IB=WINIO@('%^bm[SPLASHBMP]&','EXIT')

 IB=WINIO@('%lc%hw&', iSplash_Wnd, jSplash_Wnd)

 IB=WINIO@('%dl%lw', Delta_Time, KOUNTER, ICTRL)

 RETURN

 END

 INTEGER FUNCTION KOUNTER()

C --------------------------

147

 COMMON /SPLASH/ ICTRL

 COMMON /Spl_Hnd/ iSplash_Wnd, jSplash_Wnd, NoInc

 LOGICAL IA, SetWindowOpacity

 IF (NoInc .GE. 1) THEN

 IA = SetWindowOpacity(jSplash_Wnd, NoInc)

 NoInc = NoInc - 1

 KOUNTER = 2

 ELSE

 ICTRL = 0

 KOUNTER = 0

 ENDIF

 RETURN

 END

Essentially the initial splash window is a captionless window which also does not have many of
the fairly standard attributes of a window, set by the more or less self-explanatory options
no_border, no_caption, no_maxminbox, topmost, toolwindow, and no_frame. The option topmost
makes sure that it shows while the master window is being created beneath it, and the option
toolwindow makes it certain not to show in the Windows taskbar. Basically, all you see is the
bitmap. There are certain nuances in the ClearWin+ code given in the subroutine SPLASHER, and
one is to give the bitmap its own callback, which means that the user can in fact dismiss the
initial splash window by clicking on it: in the particular program that this routine comes from
the master window in any case opens very quickly. The bitmap has been given the local name
SPLASHBMP in a RESOURCES statement.
 Handles for the bitmap and the window as a whole are then requested by the use of %lc and
%hw, and a timer set with %dl to have an interval given as a parameter. Finally, the window is
given a variable by the use of %lw so that the fadeaway process can be terminated by the
program if the master window is completed early enough, as it might be if the application was
started via a user click on an associated data file. (The ICTRL variable being set to 0 to do that).
 The timer delay %dl invokes its callback routine KOUNTER at the end of each interval, with a
progressive decrease in the opacity and at the end of the sequence ICTRL is set to 0 in order to
close the initial splash window.
 I have used the routine to set the opacity on many occasions and it is something that
originated in a post on the FTN95 user forum. I have left it more or less in its original style, not
least because it shows how complicated Windows programming can be if you do not use
ClearWin+. This particular routine only works in 32-bit FTN95/ClearWin+.
 I have left in the code to determine the screen size so that if you wish you can define a
differently sized bitmap for high resolution screens. There is also a fragment of code left in to
examine the logical DPI setting, and therefore whether large fonts are in use.

Figure 17.1 This is the sort of graphic you might use in an opening splash screen.

Busy Bee

Apiarist Software Ltd, Acapulco and Kalamazoo

Time Management

and Fee Billing

148

Figure 17.1 shows a typical splash screen graphic. The corporate colours would then ideally
always be a green background, with white and yellow text, and a recognizable logo that could
be positioned semi-unobtrusively on dialogs and perhaps also on hard copy. If the toolbars do
not fill a typical screen, then a version of this could be used as a space filler in a way that keeps
the user’s attention focussed on the application. You might consider having variants to suit
different monitor resolutions and aspect ratios.
 I would draw a large graphic like this in CorelDRAW!, then import it into Corel Photo Paint
and export from there into the relevant bitmap format, and importing into Photo Paint does
some antialiasing that improves the visual quality of the image onscreen.

17.11 A note about handles

A Windows handle is an unsigned integer that serves to identify every single window or control
in an application. For many purposes, the handle can be ignored as either it is not required by
the application programmer, or it is managed through ClearWin+. The integer is returned to the
pool of available handles when the window or control that it refers to is closed. Hence, the
handle for a particular control will vary from invocation to invocation. Windows handles are
provided by the Windows operating system and are returned to the application program
through mechanisms such as the format code %lc, which returns the Windows handle for the
control specified in a WINIO@ format string immediately prior to the use of %lc.
 Occasionally, a different type of handle is required. This is a ClearWin+ handle. Like a
Windows handle, it identifies a particular control, but one that is not simply a standard
Windows control, but one that is managed by ClearWin+. In recent releases of the Silverfrost
documentation it is described as a User ID (UID) in an attempt to resolve the former ambiguity.

149

18 Some more about graphics

I like to think about the graphical interaction possible in a program using ClearWin+ as having
three possible levels. In level I the user draws something on a drawing surface but all the details
of that are supplied from the contents of the data file or dialog boxes. Level I can include
hardcopy, but again without direct interaction with the graphics.
 Level II, on the other hand, is where the user does interact with the graphics with the mouse
pointer, for example by selecting objects or inserting or deleting them. Zooming in or out is
somewhat transitional between level I and level II, as is rotating the object or even the complete
contents of the drawing surface.
 When it comes to level III, the user can actually move objects around on the screen and
reposition them.
 There are some applications where level I is completely appropriate, and many more where
level II is perfectly adequate. However, there are some where level III is required. If you
consider that a level III is needed in your application, then you must be prepared for a great
deal of additional programming. To move an object or to reshape it interactively is a matter of
rubbing it out and redrawing it in real time which definitely requires full_mouse_input. It also
requires knowledge of drawing modes.

18.1 Drawing modes and an example

There are basically four drawing modes:

0 Replace the pixels completely with whatever you draw on top

1 Perform a logical AND with former and overwriting pixels

2 Perform a logical OR between former and overwriting pixels

3 Perform a logical XOR between the former and overwriting pixels

Mode 0 is what we normally do, and it does the ‘Painter’s Algorithm’ with the new replacing the
old. Mode 3 is interesting in the context of level III graphics, because if you draw something in
XOR mode over something else, and then redraw it a second time in the same place also in XOR
mode, that new graphic disappears and the old one returns. Basically, that’s what’s happening
to your mouse pointer when you move it – it is drawn initially in XOR mode, and when you
move it, it is drawn again in both where it was (to rub it out) and again in its new position (or
positions, as you can see it moving).
 You can select the graphics write mode using a standard subroutine GRAPHICS_WRITE_MODE@
with a single parameter, one of the four options above. In principle, anything movable has to be
drawn in mode 3 and if it is to be moved, it needs to be redrawn at the original position in mode
3 and then moved and redrawn again also in mode 3 in the new position. If it is left where it
ended up, that’s no problem and you don’t have to redraw it in mode 0.
 The problem comes if you do everything originally in mode 0, because then you would have
to redraw everything except the object be moved, and redraw that particular one in mode 3. If
you changed the colour of the object so that it could stand out while moving, then you would
need to redraw it but probably after a change back to the original colour and if you’d finished
moving it, then back in mode 0. Should the object be partly obscured by later objects, or be
lower in the ‘Z-order’ (and so be partly obscured by later objects), then you probably need to
redraw everything. The Z-order implies that some objects are at the bottom of a pile of objects,

150

and others are progressively more and more on top. This can be a real order if a 3-D object is
being drawn, or a virtual order in a 2-D drawing.
 You will find an example of the use of Mode 3 (XOR) drawing in Appendix D, where a whole
program is presented. I call the program ‘Stretchy Box’ and it was written in a fairly explicit way
to illustrate the points, which makes it good for this book too. No doubt the logic could be tidied
up. Basically, a quadrilateral with nodes at its corners and in the middle of its sides is drawn
and the user can by picking up any one of the nodes move it and cause the box to change shape.
The program also changes cursors on-the-fly, and uses some cursors from the ‘Smooth set’ by
Vlastimil Milér. I could have used the standard cursors in ClearWin+ had I known at the time
that they were available.
 Modes 1 and 2 get us out of the realms of ClearWin+ and into the realms of advanced
computer graphics. A readable text if one that is a little dated is Angell and Griffith’s “High-
resolution computer graphics using Fortran 77” published by Macmillan. There are later
versions of the book and also doing the same material in other languages.

18.2 Cursors

By default, ClearWin+ uses a very standard mouse pointer for just about everything except
when that pointer moves over a drawing surface, when the cursor changes automatically to a
small crosshair or cross. A total of 11 cursors are defined in the various .INS files (or the related
.MOD files if you prefer modules):

 INTEGER*4 CURSOR_ARROW,CURSOR_IBEAM,CURSOR_WAIT,CURSOR_CROSS, &

 &CURSOR_UPARROW,CURSOR_SIZE,CURSOR_ICON,CURSOR_SIZENWSE, &

 &CURSOR_SIZENESW,CURSOR_SIZEWE,CURSOR_SIZENS

 PARAMETER(CURSOR_ARROW = 32512)

 PARAMETER(CURSOR_IBEAM = 32513)

 PARAMETER(CURSOR_WAIT = 32514)

 PARAMETER(CURSOR_CROSS = 32515)

 PARAMETER(CURSOR_UPARROW = 32516)

 PARAMETER(CURSOR_SIZE = 32640)

 PARAMETER(CURSOR_ICON = 32641)

 PARAMETER(CURSOR_SIZENWSE = 32642)

 PARAMETER(CURSOR_SIZENESW = 32643)

 PARAMETER(CURSOR_SIZEWE = 32644)

 PARAMETER(CURSOR_SIZENS = 32645)

18.3 Previewing real-world coordinates

When you want to add something to a drawing surface that you can see, and which represents
a physical scene with real world dimensions, it is useful to be given a hint as to where the mouse
cursor is in those real-world coordinates. There are several methods, but none of them can be
any more precise than to the real-world size of a single pixel.
 One method is to follow the cursor in full_mouse_input mode and in real time, convert the
mouse position into real world coordinates. A good place to display those coordinates would
be a status bar, but what seems to be a good alternative would be to put the coordinates in a
dialog that follows the mouse pointer around. Such a dialog would conventionally be above and
to the right of the mouse pointer, but it needs then to flip to the left of the pointer as the right
margin of the drawing surface is approached, or from above to below at the top of the drawing
surface. Sadly, doing that causes a most annoying flickering, especially on comparatively slow

151

computers, and the status bar approach is far better. The following code illustrates the
procedure, but simply reporting pixel coordinates for brevity.

 WINAPP

 OPTIONS (INTL, DREAL)

 PROGRAM FOLLOW_THE_MOUSE

C ------------------------

 COMMON /MOUSE/ IX, IY, LW

 INCLUDE <WINDOWS.INS>

 EXTERNAL KB_GET_CURSOR_POS

 DIMENSION IAR(3)

 IAR = 25 ! whole array

 IW = WINIO@ ('%ca[Follow the cursor]&')

 IW = WINIO@ ('%3sb%lc&', IAR, LW)

 IW = WINIO@ ('%`cu&', 32652)

 IW = WINIO@ ('%^gr[blue,full_mouse_input]', 600, 400,

 & KB_GET_CURSOR_POS)

 END

 INTEGER FUNCTION KB_GET_CURSOR_POS()

C ------------------------------------

 COMMON /MOUSE/ IX, IY, LW

 CHARACTER*(20) XTEXT, YTEXT

 INCLUDE <WINDOWS.INS>

 IX = CLEARWIN_INFO@ ('GRAPHICS_MOUSE_X')

 IY = CLEARWIN_INFO@ ('GRAPHICS_MOUSE_Y')

 WRITE(XTEXT,'(" X=",I4)') IX

 WRITE(YTEXT,'(" Y=",I4)') IY

 CALL SET_STATUS_TEXT@ (LW, 0, XTEXT)

 CALL SET_STATUS_TEXT@ (LW, 1, YTEXT)

 KB_GET_CURSOR_POS = 2

 END

Note that the simple status bar created with %sb needs the displayed contents to be converted
into character strings first.
 Another method that does not require the programming effort in a graphics callback is to
draw rulers around the periphery of the drawing surface, and change the cursor to a pair of
long cross-hairs, so that the user can read off the position from the rulers. Rulers are enhanced
if the object is covered by a grid, which can be underneath the object (and therefore drawn first)
or on top (and therefore drawn last). Grids work well in blue or green shades. Appendix B
contains a routine for drawing such a grid and labelling it. To gain the most benefit from rulers
you need a cursor that extends to them, which you can switch on with a call initially to
SET_GRAPHICS_SELECTION@(3) and subsequently return to the original cursor with
SET_GRAPHICS_SELECTION@(0).

18.4 More on status bars

The example in the previous section of a status bar created using %sb also shows how to change
the text in the different parts of the bar by means of the SET_STATUS_TEXT@ subroutine. At the
time I write this, a status bar created in this way can only contain panels with character strings.
 An alternative way of creating a status bar uses a box defined beginning with %ob[status]
and finishing in the ordinary way with %cb (as described in section 6.14). Inside such a box you
can have any controls that you like not limited to text panels but including icons, bitmaps,
buttons, slider bars and so on.

152

19 I shall say this only once ...
14

Some of the format codes are used so infrequently that when writing a second application it is
quite possible to forget that they even exist or to forget how to use them. It is a good idea to
look at your previous codes and refresh your memory from the online help file.

19.1 Dynamic captions

One example of something I only use once per application is to change text on the caption bar
of my master window. I never do it with dialog boxes. My use is to add the datafile name to the
program name. You create a dynamic caption by putting the symbol ‘@’ in the %ca format code
and give the text as a variable in the parameter list of the WINIO@ function call. So, for example
when setting up the master window, we might have:

 CAPTION_TEXT = ‘Play Beethoven’

 IW = WINIO@ (‘%ca[@]&’, CAPTION_TEXT)

Then, somewhere else in the program, after a file named (say) ‘MoonlightSonata.MUS’ we
might wish the caption bar to read:

 Play Beethoven + Moonlight Sonata

In this case, the datafile name would need to be trimmed of its extension, a space inserted to
open up the camel case, and the resulting filename concatenated with the original program
name, before assigning the resulting string to CAPTION_TEXT, which would, of course, need to
be in scope. I always find that COMMON is my friend with things like keeping a variable in scope,
but if you do prefer to work in terms of modules, then that is perfectly satisfactory too. The only
limitation is that the character variable CAPTION_TEXT needs to be long enough to contain
whatever you want to put into it, and when joining a file name to a program name it might be
necessary to strip out most of the path information.
 There is a school of thought that on entry to a new datafile that its filename should be set to
something like ‘Untitled.dat’ so that File/Save does not need to bring up the standard
Windows file opening dialog, and why not, as Save As is available if you want to change the
name. That’s not my preference, but it could easily be yours, in which case it might be useful to
put the filename into the caption right from the start.

19.2 Exit Windows

I write this as a reminder not to forget to put in an %ew format code so that the data file contents
are not lost when Windows is shut down. You will need it as well as %cc.

19.3 Windows styles

All of my applications tend to have a master window that is rather unique and all the dialogs
have a common set of appearances. A number of the format codes are all about the appearance
of a particular window or dialog. Two very important format codes are %ww and %sy, the former
applicable to any dialog, but the latter only to the master window. I find that with the client area

14 A catchphrase from the BBC TV sitcom series `Allo ‘Allo

153

filled by toolbars and a drawing surface, a border simply takes up valuable space and therefore
I tend to use %sy[no_border]. However, when the drawing surface extends down to the window
frame, the whole window appears somewhat unbalanced because of the caption, the menu bar
and any toolbars on top of the window. Normally, therefore, I add a status bar to balance things
up.
 When using %sy[no_border], the background colour for the window is rather redundant, but
when setting a background colour, I find that the use of a colour that is one of the normal
Microsoft Windows settings makes more sense than using a custom colour because it fits in and
does not look so garish, for example, %bg[btnface].
 For dialogs I also have some useful rules of thumb, including the default font to use and its
size. If the screen is more than 1000 pixels high, then the default size tends to be okay, but
smaller than that and it is useful to reduce its size to about 0.9 of the standard size - if the
application has to run on anything before Windows Vista, the default font may be MS Sans Serif,
which would need to be reduced by a factor of 0.8. Later versions of Windows used the font
Tahoma, and then Segoe UI.

A routine called WINSTYLE@ was added in order to provide a default style for all subsequent
WINIO@ windows.

 SUBROUTINE winstyle@(FORMAT)

 CHARACTER*(*) FORMAT

FORMAT is the same as the first argument of WINIO@ but has no other arguments. Its use is
restricted to the following format codes:

 %fn Font name
 %bf Bold font
 %it Italic font
 %ul Underlined font
 %ts Text size (in the new form %ts[value] where value is a floating point number)
 %tc Text colour
 %fb Button font
 %ww Window style
 %sy Dialog style
 %es Escape key closes the window

 A terminating ampersand (&) for continuation may be used but is not required. The
WINSTYLE styles then apply to all subsequent windows. Example code is given in the
enhancements file under item 385.

19.4 The minimise icon

Another thing that you quite possibly only need to do once per application is to add a ‘minimise
icon’ to your master program window. The format code for this is %mi, and the icon needs to be
16x16. Adding a minimise icon to a window allows it to show in the taskbar when the window
is completely minimised, which is a good thing, but it opens up access to an old feature called
the system menu that allows a window to be maximised. For a dialog box that should be fixed
in size, the system menu is a disaster, and as a result, dialogs should not get a minimise icon.

154

19.5 Pivots and resizing

Quite a number of ClearWin+ controls can accept a pivot which means that they will resize if
the window containing them is resized. Certainly, you will probably want your main program
window to be resizeable, and if you follow my route which is to have the entire client area
occupied by a %gr drawing surface, then that might be the only pivot that you have in your
whole program. Users do not normally expect most dialogs to be resizeable, but rather they
expect them to be fixed size and therefore that the various controls are laid out in a familiar
fashion. The only exception is when the program is displaying something that could, if
necessary, be tucked out of the way, such as a dialog in which there was a graph. As well as
tucking it away, it might be useful to have the graph expanded to occupy the whole screen so
that its detail could be inspected. I think of these types of dialogs as ‘High Status’. They do
benefit from using a pivot.
 Just a reminder: the %pv goes before the format code for the resizable control, and despite my
suggestion that you keep as few format codes as possible in any WINIO@ call, it is probably a
good idea to keep the %pv in the same call as the resizeable control, as that makes it ‘connect’
when you read the source code.

155

20 Beat the clock

It is a matter of some astonishment to me that programs that literally ran for hours now
complete very quickly. I remember running something (a finite element code) overnight where
after 17 hours, all the available space on the hard drive was filled up with intermediate results,
and the program crashed. It was nearly Christmas, and I had promised the results for the New
Year. I went out and bought a machine with a 486 processor instead of the 386SX I had been
using, installed it in my office and put the software on it and went to make a cup of tea. When I
checked, the cursor was flashing and I thought “Oh no, I’ve wasted my money!” But, in fact, the
machine had completed the task in about 20 minutes. Nowadays, that program runs even faster
and finishes in just a few minutes using what I now consider to be negligible quantities of hard
disk space.
 As it happens, the results were available on time, and that enabled some tunnel lining
segments to be designed, constructed and supplied to site in time for the tunnelling machine to
get under a very large and heavy building that no one in the design team had appreciated would
be built over the line of the tunnel!
 The point of all this is that sometimes a program will run for a long time, and you need to
program in a means to tell the user that all is still well, the program is running, and the user just
has to wait. As well as telling the user that the program is running, it may be a good idea to tell
them how far along the process it has got, when you expect to finish, and having finished, to tell
them that it was successful!

20.1 Analyses with short delays

Most users will be familiar with Windows software that takes an appreciable time to execute
some sequence or other showing a change of cursor to denote that the application may be
unresponsive. For several versions of Windows, the icon was an egg-timer, but lately it has been
replaced by an animated ring design. ClearWin+ deals with this case by switching on the
‘waiting’ cursor (the rotating ring) with CALL SET_CURSOR_WAITING@ (1), and turn it back to the
default cursor with the same call but with a parameter of 0. The question is, just how long can
you show the ‘waiting’ cursor before the user loses faith in that the analysis hasn’t, in fact, hung
up? That usually requires something more intricate than the waiting cursor.

20.2 Longer completion times

For a longer wait, there are alternative ways of showing that the program is still alive. One of
those methods is to show a hollow bar that fills gradually with colour. A standard ClearWin+
format code for this is %br, and the bar may be horizontal or vertical and can fill in either
direction. In this case, the user will lose confidence if they do not see movement of the infill, so
the bar is the mechanism for showing that the program is active up to a couple of minutes.

 INCLUDE <windows.ins>

 BAR_FRACTION = 0.0

 IB = WINIO@('%ca[Bar format]&')

 IB = WINIO@('Processing%2nl&')

 IB = WINIO@('%20br&', BAR_FRACTION, RGB@(0, 0,255))

 IB = WINIO@('%lw', LEAVE_CODE)

156

 DO 10 I = 1,100

C ... perform 1% of a lengthy calculation

 BAR_FRACTION = BAR_FRACTION + 0.01

 CALL WINDOW_UPDATE@ (BAR_FRACTION)

 10 CONTINUE

 END

20.3 Even longer completion times

For even longer run times, it is probably better to give the user some indication of when they
might expect completion. There is a choice between messages such as “X percent completed”,
“Expected completion in Y minutes” and “Completion expected at time Z”, and these messages
could be accompanied by a progress bar. In all cases it is probably desirable to give the user as
much information as possible by frequent updates to the message although users tend to be a
bit frustrated if they come time to completion estimate gets longer and longer. If the estimated
time left for completion does not change, then the user will soon get frustrated, and if the time
is progressively extending, it may be worth adding a “Time taken so far” indication, as that will
certainly update and at least show that something is happening.
 The benefit of the ‘percentage completed’ message is that quite often it is possible to make a
reasonable estimate of how far through a particular calculation the program is at any moment
of time. If the user is expected to have some understanding of the processes in the program,
then it may well be appropriate to use multiple progress bars with each representing one of
those phases of analyses. An estimate of the time at which completion could occur would
normally require a certain amount of benchmarking to produce an estimate of the time taken
to perform certain types of analyses and is likely to be well in error if the user moves the
software to a faster or slower computer.
 Even though most of my applications run effectively in real time, I do recognise that there is
still software that runs for hours or possibly even days. In such a case I do wonder about the
value of those completion time messages. A solution to the problem of computers running for
hours is possibly to reserve a computer specifically for solving those types of problem, although
it is a difficult one, as most users would prefer to use the fastest computer in their possession
for their daily work!
 Although I had found that in the early days of FTN77 running under MS-DOS with the DBOS
extender software that it was as fast or faster than just about any other compiler on the market,
benchmarking with current versions of FTN95 shows that there are other compilers that do
produce a faster code. If speed of execution matters that much, then one possibility is to
maintain the user interface with FTN95 and ClearWin+, but to spawn an executable program
compiled with some other compiler. Communication each way, initially from the user interface
in which the dataset is created to the number cruncher and vice versa to display and interpret
the results can be done using disk files. For my own work, however, I definitely find that FTN95
is more than adequately fast even without using the optimiser switch when compiling.
 In any case, the passage of time and developments within computers will make applications
run faster and faster, and something that seems slow will run faster on your next computer or
the one after that.

157

20.4 Answers to my questions

In short, the answer to my question about how long you should use each method of indicating
to the user that they have to wait is probably not much longer than a minute to use the waiting
icon, and probably not more than two or three minutes to use the progress bar without some
other indication about how long to expect. With the progress bar, I would expect users to be
happy if they can actually detect progress so that with the sample code above where the
progress is indicated in steps of 1%, then I would expect that progress to be indicated and
detectable for a progress bar on its own as something in the order of 10 to 20 seconds.
 The next question, of course, unasked so far, is where to put the progress bar if that is the
method chosen. Ordinarily, a progress bar would appear in a dialog. If the application is marked
by many instances where the user does have to wait, then a progress bar might be put in the
status line.

20.5 The drum beat

Of course, sometimes you choose the rate at which things happen instead of accepting the
computer telling you how it is doing. An example of such a choice is in the gradual fading out of
an initial splash screen which I described earlier. Such a programmed ‘drum beat’ is done using
the %dl format code.

158

21 Dealing with text

I don’t tend to write programs that are about text, but there are functions within ClearWin+

that allow you to incorporate large blocks of text into an application, including all the tools to

create, insert, cut and paste and delete things in that block.

21.1 Short strings

Short strings are dealt with using the %rs format code, which in many respects is similar to the
numeric input format codes %rd and %rf. You can specify the width of the control by prefixing
it with n, as in %8rs where n=8, but n is optional and when used it specifies the number of
average width characters in the displayed output. The output will scroll horizontally within the
specified width if necessary. The format code can also take a callback, and if so, the qualifier ^
must be used. If the grave qualifier ` is used, then the string displayed in the control can only be
changed by the program using WINDOW_UPDATE@(string).
 The format code can also accept a grey control, which as usual is 1 for enabled or 0 for
disabled (greyed-out). If a call-back function is used, it is placed after this control variable.
 Some experience using this format code was that users sometimes find it tedious to enter
labels when they are entering numeric values and if there is only a small number of options it
is better not to expect the user to type the option name in (where there is always a possibility
of making a typographic error), but to present the user with a drop-down box where the action
is simply to select one of the presented options (see, for example, Figure 6.2).
 This control allows the entry of passwords through the option PASSWORD, in which case an
asterisk (*) appears on the screen for each character even though the string is stored correctly.
Dealing with a password is a function of assessing the validity of what has been entered, and
that should normally be done through a callback function. Passwords may be used so that only
accredited users can have access to the program’s functionality, but even a simple password
can sometimes be useful as a check when a user is about to perform an operation that might
have significant consequences. An example in my own programming relates to SCAMPS, where
sections of the survey that are judged to be adequately correct can be locked against further
change.
 Additional options UPPERCASE and LOWERCASE can be used so that the string that is entered is
automatically converted to the correct case before storage regardless of what is actually
entered. A fourth option, NO_ADDITIONAL_DEPTH removes the standard spacing between this
control and the next line, and has an odd genesis. In early versions of ClearWin+ this option was
the standard, but as the norm in Windows is to have that additional space it was included into
the control. In doing so, it broke some existing codes including one of mine where the text was
entered into a neat little cartouche. However, by the time the option was added I had redesigned
things so the that the additional depth did not bother me and indeed I found that I preferred
my later design to the original one! This option may help when placing %`rs strings on top of a
background image (for example) as part of a toolbar.

159

21.2 Editing functions

It is possible to do cut-n-paste or copy-n-paste with the contents of an %rs control, but unless
you program the responses yourself, the standard key sequences do not work. Instead, you have
to attach standard callback functions to menu items and/or accelerator keys.

 IK = WINIO@ (‘%ac[Ctrl+X]&’, ‘CUT’)

 IK = WINIO@ (‘%ac[Ctrl+C]&’, ‘COPY’)

 IK = WINIO@ (‘%ac[Ctrl+V]&’, ‘PASTE’)

When you no longer require the accelerator, then you can use CALL REMOVE_ACCELERATOR@.

The subroutine set_highlighted@ can be called to select all of the text in the edit box. It takes
one INTEGER argument which is the handle given by %lc.

21.3 Drop down selection boxes

You have several choices : %rs with %dd or %ls.

When %dd is used with %rs, it should be placed the before %rs format code. In this case it should
have a non-zero step value (which is ignored). The subsequent %rs box should have a call-back
function which uses CLEARWIN_STRING@('CALLBACK_REASON') to identify the reasons
'SPIN_UP' and 'SPIN_DOWN'. The call-back function must provide the response to the spin,
because the control itself does not.

 WEEKDAY = ‘Monday’

 IK = WINIO@ (%dd%^`rs&’, 1, WEEKDAY, KB_STRING)

This variant of the control should be used when the next or previous display value is obvious,
for example, by cycling through the days of the week or months of the year, and moreover, it
should be configured so that the list is endless or ‘rolls over’. An example of roll-over would be
to follow Sunday by Monday again, or December by January. Other lists where the sequence is
obvious includes paper, scissors, stone or tinker, tailor, soldier, sailor etc. The reason that your
callback should roll over is that the spin wheel arrows do not grey out when the end of a list is
reached, because there is no pre-defined list, and the sequence should be obvious because the
user does not get to see all the options without scrolling through the whole list.
 The advantage of %dd + %rs is that the list does not need to be assembled, and its disadvantage
is the need for roll-over.
 In comparison, %ls needs a list to be assembled, and because the user should be able to see
all the options, then the list needs to be comparatively short.

 CHARACTER*(15) LIST(6)

 LIST(1) = ‘Miss Scarlet’

 LIST(2) = ‘Colonel Mustard’

 LIST(3) = ‘Professor Plum’

 LIST(4) = ‘Mrs Peacock’

 LIST(5) = ‘Mr Green’

 LIST(6) = ‘Mrs White’

 NUM = 1

 IW = WINIO@ (‘%15.6ls&’, LIST, 6, NUM)

mk:@MSITStore:C:/Program%20Files%20(x86)/Silverfrost/FTN95/ftn95.chm::/ClearWin+/formats/_rs.htm

160

In this case, the sequence is not ‘obvious’, and it is unlikely that the user will want to select the
next or previous value but will want to see all options. NUM is the number of the initial selection,
but this will be altered and returned as the number of the selection made by the user, so it has
to be a variable. The control can be greyed-out.
 The length of the list is fixed, but if there are blank entries (e.g. LIST has 8 values, and the last
two are blank) then two further entries could be added, or items removed from the display by
blanking them.

21.4 Other selections

You can do selections using radio buttons and tick boxes, but not for very long lists. Should you
wish to use a facility that you have seen in someone else’s application, then a search through
the online help files will usually throw up the answer quickly. Occasionally, the details are
better explained in the enhancements file, but that is usually the case with relatively newly
introduced facilities.
 A choice has to be made as to whether the selections are all made through the menu structure,
where the selection can be inspected just by dropping down the menu and looking for check
marks, or via a dialog.

21.5 Long text blocks

Small blocks of text can be input or edited using the %rs format code, and for longer blocks you
have the choice of two methods and their related format codes: %eb or %re. Both of them are
fairly complicated, but are described fully in the help file documentation and they certainly do
not need the ‘trickery’ that is part of the methodology of %lv (and %bv). The complexity of the
%eb and %re format codes is largely because the longer the block of text you expect the user to
edit, the more likely it is that there will be a need for cut, copy and paste.
 The format code %re uses Microsoft’s standard edit control and therefore reacts to Microsoft’s
standard key sequences for editing, whereas %eb needs those key sequences to be set using a
ClearWin+ callback and other functions. %re has generic similarities to %rs.
 Another critical difference is that %re was for a long time restricted to editing 32k bytes or
less, and %eb was not.
 The description of %re in the online help file is supplemented by several entries in
CWPLUS.ENH, notably 143 and 418, and the length of the associated text was increased
substantially at FTN95 version 8.40 (see CWPLUS.ENH notes 422 and 424). Similar notes also
apply to %eb (notes 145, 153, 165, 166, 271, 410 and 411). %eb does not appear to handle text
with UTF-8 encoding.
 A third option is the text array (%tx), also well described in the help file.

On the basis that a facility to edit large blocks of text would not normally be found in an older,
pre-existing, Fortran program, then for space considerations I will leave this matter to the
online help.

161

22 My least favourite bits

There are things that I don’t like very much about ClearWin+, some things I don’t like very much

about FTN95 (not many!), but then there are also things that I don’t like very much about

Fortran or even Windows! I expect everybody has their own personal list of things they don’t

like or indeed that they find difficult to do using the facilities that they are given. My list is very

personal and I do not expect for one moment that it will be the same for anyone else. It would

be just a personal indulgence to provide my personal list, and so I will confine myself to listing

the things that I find particularly difficult.

22.1 EXTERNAL routines such as callback functions

I always found it very difficult to write callback routines because I never had any use for
EXTERNAL before I started programming with ClearWin+, and I always programmed FUNCTIONs
to return a value rather than a success or failure code. After a couple of decades of experience,
I can do it, but honestly it isn’t my preferred use of functions. Indeed, with modern Fortran it is
possible to return an array from a function, and I have never done that and I’m equally sure that
if you wrote a function that did return an array you could mess up WINIO@ in a big way.
 It is also pretty difficult generating literally dozens of callback functions for every button and
menu item, with the sole saving grace being that the callback functions for a toolbar reuse the
functions from the menu system – almost. The sheer prolixity of the required code makes it
essential to be organised with your source code, and that can’t be a bad thing (unless you don’t
do it, and get in a muddle).

22.2 Foibles

One foible that I find irritating is when I write text to a drawing surface using the default font
and I place it with coordinates of its top left-hand corner but if I do anything to change that text,
for example by making things italic, bold or underlined (or select a font), then the position point
changes to the bottom left-hand corner of the text block. I find it quite hard to position things
using the coordinate system for any drawing surface with the y-coordinate increasing
downwards, but simplify this because normally I’m dealing with real-world coordinates and
therefore have a way of forgetting about the drawing surface coordinate system because my
transformation routines take care of it for me. I don’t particularly like statement functions, but
they do have a very useful purpose for doing these transformations. It’s very easy to forget what
statement functions are, and therefore what they do, but they are compiled inline and therefore
using them saves a lot of coding.

22.3 Branchview and Treeview (%bv and %tv)

I really can’t get on with these format codes although they have a lot in common with the
listview (%lv) control (see Chapter 14) that I struggled with for years. Fortunately, I have never
really needed them, and haven’t therefore had to spend a lot of time getting to grips with them.
The key to understanding all three of the ‘view’ formats is to understand that the formatting
and content are all bound up in a character string, and you need to understand how to encode
and decode those strings. Once you have mastered that idea, the ‘view’ formats become – if not
exactly easy – then at least understandable.

162

22.4 OpenGL

I wish that I could find a good, readable and comprehensible guide to programming OpenGL, as
using it instead of the GDI, it is possible to get all manner of superb graphical effects. ClearWin+
can open drawing surfaces that use OpenGL, and so the option is there. Fortunately, it has never
been essential in my work.

22.5 Large fonts

I have only ever owned one computer that had by default a large font setting, and that was a
large screen Acer laptop. The problem with large font settings is that they subtly change the
size of the character grid that ClearWin+ relies on for spacing controls. In my case, it messed up
the spacing of icons for a toolbar and that caused me a lot of work to resolve. Occasionally, a
different font size setting can also mess up alignments in quite simple dialog windows. It is
always worth checking your program with at least 125% font size setting.

22.6 Windows changes from version to version

One thing that really annoyed me was that I had some pop-up dialogs that used no_frame,
no_border, no_caption and were volatile. They also used drop_shadow (options in %ww). They
looked great in Windows XP. But as Windows advanced from version to version, the drop
shadow effect became progressively less pleasing, until I had to do away with it altogether.
 Another thing that changes is the default font, and that affects the spacing in dialogs on
occasion.
 A subtle issue is that over the years, Windows has changed the default keyboard shortcuts for
Cut, Copy and Paste, certainly since I learnt it with Windows 1! It is a matter that can still be
managed by judicious use of ADD_ACCLERATOR@ etc, However, one of the reasons I stick to my
preferred editor instead of using the now far better-developed and infinitely more helpful Plato,
is that Plato doesn’t respond by default to the keyboard chords that I still use!15
 The final (I hope!) issue lies in the appearance of applications. Up until Vista, a 3D appearance
for toolbars etc was the norm, but afterwards, Microsoft moved towards a flat appearance. Once
you have drawn several hundred icons in one style for toolbars and all the relevant options (up,
down, selected, greyed) it is annoying to have to repeat the exercise just to keep your apps
looking up to date. Personally, I preferred the 3D styles. However, be prepared to have a lot of
hard work simply dashed by a change of image at Windows’ home. (See Figures 10.6 and 10.7
for examples of older styles).
 Some of the examples illustrated in the online help files were created with earlier than
current versions of Windows, and you will find this subtle annoyance in your own Help
documentation.

15 PLATO is, of course, configurable to respond pretty much however you want. I do most of my work on
my desktop and only rarely on my laptop. Both installations need to be user-configured the same way if
it isn’t to drive you crazy! I recommend that you use PLATO, and dismiss my preference as simply that
of an old dog who can’t (or won’t) learn new tricks. The configurability of PLATO means that you can
cope with whatever Microsoft throws at us in the future.

163

23 Distributing your application

In the early days of personal computers an application could well be distributed on a single
floppy disk with an installation batch file that would put the program and all its ancillary parts,
including typical test data, into one or more subsidiary folders on a hard disk. If we go back
further than that, it might even have been possible to run the program from the supplied floppy
disk!
 Nowadays, there is bound to be a lot more ancillary material to go with an application, and
this may include not only the main compiled help file but other documentation and in the case
of a program compiled with 32 bit FTN95, at the very least it will require a copy of
SALFLIBC.DLL. In the case of 64-bit FTN95 it may require other dynamic link libraries,
SALFLIBC.DLL and CLEARWIN64.DLL).
 In order to get the effects that the application programmer has built into the program it may
be necessary to install other fonts and to register various things with the main windows
registry. To do all of this requires an installer application.
 Users may be familiar with downloaded applications where first you download a .MSI file,
and when that is executed, it makes other downloads and goes on to install everything. An
alternative approach is to wrap everything up in a single .EXE file with the compressed (or
zipped) versions of the application executable and its ancillaries. When that installation
program is run it unzips itself, puts the various parts in the right locations, installs fonts and
makes the registry entries, and on completion possibly even offers to run the program.

23. 1 Installer programs

If you choose the .MSI route, then you will need to acquire the appropriate software to generate
such files, but if you choose the self-unzipping executable, then you are following the same route
as I follow. You may find commercial software, or freeware. I use some software called Inno
Setup written and kindly distributed as freeware by Jordan Russell’s software organisation and
which is to be found at this web address:

https://jrsoftware.org/isinfo.php

 To use this software, you create a script that contains instructions on what files are to be
included and where they must unpack, and Inno Setup packs everything into a single executable
file, which when run unpacks itself. You can also install fonts and other features, update the
Registry and so on. One nice feature of the software is that you can personalise it with your own
program’s bitmap.
 You will be pleasantly surprised at how small the installation executable is, and in many cases,
you could distribute your program via a fairly quick Internet download. The era of extremely
cheap recordable CD media appears to be over (which is a pity) because most computers bought
new are no longer equipped with CD or DVD drives. Removable USB media tend to have far
more capacity than you really need and also, they are priced much more than a single CD. They
are usually the wrong shape to slip into a wallet inside a user manual, although it is possible to
purchase USB media that is the same size as a credit card and perhaps twice as thick. Such media
can be printed with the appropriate branding.

https://jrsoftware.org/isinfo.php

164

23.2 User manual

Despite the prevalence of online help, many users prefer to have some sort of paper manual,
and if installation of your software requires any special knowledge you will at least need a
pamphlet because the online help will not be available until something is installed. There are
many print shops that will produce booklets for you and provided they are not overlong, they
are not particularly expensive even in comparatively short runs. You may even be able to bind
a manual yourself using a ring binder, but Wire-O binding looks far more professional. Many of
those print shops offer ‘perfect’ binding where the pages are glued into a cover, or for a higher
price, books can be prepared where the papers are sewn into signatures.
 The choice as to whether or not to produce a user manual must be yours, but purchasers of
your software usually consider it to be a better deal if they do get a printed manual and some
media rather than just a digital download.
 In the early days of personal computers, manuals would be supplied in ring binders, typically
in something like A5 paper size format, and sometimes the ring binders themselves were put
into sleeves. This can be expensive for short runs. Personally, I think that perfect binding with
a gloss cover is adequate, but Wire-O binding does allow the manual to lay flat. For small print
runs the turnaround time may be only a day or so, and it probably isn’t going to be more than a
week. Printing companies can be found on the Web. The unit cost is much higher for short runs,
but that is offset by the benefits to cash flow and the fact that you don’t need to store boxes of
unused manuals! It also helps the budget not to have long print runs if the user manual is
developed and enhanced rapidly.
 I use Azimuth Print in Bristol: https://www.azimuthprint.co.uk/

23.3 Hardcopy devices

One of the significant advantages of Windows is that you simply do not need to bother about
the installation of drivers for hardcopy devices such as printers. However, some of the real facts
of life about printers may impact on your program. The most common printers in much of the
world will imagine that you are going to use A4 sized paper, and you have probably designed
your report formats around this paper size with comparatively small margins although do not
forget that it is beneficial to have margins sufficient to allow the printout to be punched to be
filed away in some form of a ring binder. Although it is useful to have a wider margin on the left
than on the right if you are going to print single sided, and in fact you can organise yourself to
have to say wider left margins on odd-numbered pages and wider right margins on even-
numbered pages so that everything works if the user selects double sided printing. Even so my
recommendation is to keep the margins on both side of the page the same.
 If you expect your application to be run in the USA, or possibly Canada, their default paper
size is US letter, and it is a good idea to make sure that whatever you print will also work at that
paper size.
 Another user setting for both laser printers and ink jet printers is the dots per inch (dpi)
setting, and you should test out any graphics that you produce at a high-resolution dpi setting
to make sure that all your lines are in fact thick enough to show.
 Very occasionally, you will need to deal with larger than default paper sizes, depending on
what your application actually does. An application of mine which plots maps does not work
particularly well on A4 given the size and scale of typical surveys, and so expects A3 size paper
(on which it works very well). However, if your application prints material formatted for A4 on
an A3 printer, it turns out to be very wasteful of paper or alternatively of ink or toner if scaled
to fit, and applications that occasionally require large paper sizes will probably run on a

https://www.azimuthprint.co.uk/

165

computer or network that has both A4 and A3 (or bigger) printers. You therefore need to
program in your application that the user can select either the default printer (which will
normally be the A4 page size printer) or to specify a different printer which has the larger
format capability.
 I have arranged prints on multiple pages to cover the area that is too big to fit on one A4 page,
but if you do that you must have control over the scaling or you will end up printing many blank
pages and pages with not very much detail on them.

23.4 Multiple monitors

Most computer users make do with a single screen whether they are using a desktop computer
or a laptop and indeed a single screen is often perfectly satisfactory if it has a high enough
resolution. However, it is very advisable to test your application on at least a dual monitor setup
to see what happens if the user tries to extend your application across two screens.
Alternatively, if the user moves your application to a secondary screen, you may find that your
dialogs pop up on the primary screen and that can be annoying.
 Another situation where the computer imagines it has multiple monitors is when it is
connected to a projector. This is a situation that arises when someone uses the computer and a
projector to train others in the use of your application. Windows can be configured so that the
application runs the same on the computer monitor as it does on the projector, but it could also
be configured so that the projector is an extension to the computer monitor. It is advisable to
test your application in a case where a projector is connected to make sure that it functions
perfectly because there is nothing so likely to cause your application to be criticised as a
mysterious apparent malfunction when an otherwise contented user attempts to demonstrate
it to other people. You will find that problems are particularly acute where the computer has a
high DPI setting, or where the projector has a much lower resolution than the computer screen.
 There is nothing you can do at the installation stage to cater for such an issue or issues other
than to have performed a significant testing regime yourself to make sure things work as you
intend.
 The appropriate checks as to the number of monitors connected, the resolution and mode of
each are given by the call to the Windows functions available via MSDN and not through any
ClearWin+ functions.

23.5 The program icon

As a general rule, the first suitable icon in your RESOURCES section (or .SRC file) is used as the
program icon if your program is placed on the desktop. The problem arises because it’s not just
a matter of a desktop icon: the program icon appears in the Start menu, it may be different for
different icon size or DPI settings, and there are icons for recognised datafiles – again, in several
possible size settings.

23.6 Licensing

If you are programming for yourself, then you do not need to worry at all about copy protecting
your software and indeed, if you are programming like I have done on occasion simply to help
students at my university that I have also not worried about whether my programs are copyable
and freely distributed. Such programs can have the name of the organisation for which they are
written hardcoded into the executable. On the other hand, if your programs have a commercial
value and are distributed for a fee then you will be very interested in copy protecting them so
that they cannot be distributed and used by unlicensed organisations.

166

 You have to be very careful not to make the validation of the licence too obstructive, or you
will simply alienate your users. It is not therefore a good idea to make the user input their codes
every time they use the application. A good tactic is to provide a purchaser with a code which
is used when the program is installed or alternatively run for the first time. If you link that code
to the name of the purchaser or their organisation so that when the program runs and produces
a report it will have the name on the output, then that is often sufficient to dissuade anyone
from casual copying. It does, however, mean that the licence extends to the entirety of the
organisation rather than to an individual computer or user.
 Programs that communicate via the internet to see if they are licensed will not work if that
connection is absent. The best advice is to make the process simple so as not to annoy honest
users.
 If you are dealing with a small number of users, it is possible to create custom versions of the
software for each client organisation, for example by adding their name and address as a string
which is linked into each build. This can get tedious if you have a big client base.
 Apart from that advice, the issue of generating licence codes is a programming issue that has
nothing to do with this book.

167

24 The 8 elements of ClearWin+

This Chapter recaps and summarizes some of the things that we have learnt previously. In
essence, there are 8 main elements to ClearWin+, which I will list one by one below.
Anecdotally, there are 7 deadly sins. In Fortran, there are many more. In ClearWin+ there are
definitely at least 8 classes of things that the programmer needs to master.
 You should recognise them all from what we have done earlier in the book.

24.1 Those 8 things: No. 1, WINAPP

Probably the easiest way to tell FTN95 to compile your program for a Windows interface is to
incorporate the directive WINAPP in your code. I find it convenient to do this at the start of the
source code file that contains my PROGRAM routine. You can also compile with the /WINDOWS
command line directive. It is as simple as that. Some of the older documentation suggests that
WINAPP should be followed by numbers giving sizes for storage areas called the Heap and the
Stack, but this was required for a 16-bit Windows environment, and you can forget them if you
should see them in an older program (written for FTN77 for example).
 Incidentally, it is still possible to run out of stack space, especially if your preferred style of
programming has huge local arrays, especially when they are passed from routine to routine,
as that uses stack space. That is less likely if you are rejuvenating an old Fortran program than
if you are writing one from scratch.

24.2 Those 8 things: No. 2, INTEGER*4 and REAL*8

It’s the way that Windows works, at least in 32-bit mode, so that they are the defaults that 32-
bit FTN95/ClearWin+ work to. I still like my OPTIONS directive, however. In 64-bit mode, the
INTEGERs have to be 8-byte, or INTEGER*8 – at least when used for addressing.
 That said, there is no reason not to use different sized INTEGER or REAL variables for particular
purposes in your program. Indeed, in many programs, there is very little chance of overflowing
INTEGER*2 (nearly 33,000) and even one byte for an INTEGER may well be enough in some
situations. Some similar things can be said for LOGICAL, and indeed, as LOGICAL can only have
values of .TRUE. or .FALSE. anything more than LOGICAL*0.125 (I made that up!) is wasteful.
Sometimes, that’s all we use an INTEGER for (such as grey codes) and that also wastes the extra
bits. However, two points are noteworthy. The first of those is that even the 32-bit memory
space is vast compared to the mainframes of old, and you can usually be as wasteful as you like.
 The second point is that REAL*4 arithmetic creates and accumulates roundoff errors very
quickly, and it is possible that conversion of an old (DOS) PC program that used REAL*4 by
default may give you noticeably different answers when recompiled with REAL*8!

24.3 Those 8 things: No. 3 ClearWin+’s WINIO@ function

Really, the next 3 sections need to be understood altogether. WINIO@ is an INTEGER FUNCTION
with a variable number of arguments. The first argument is always a character string, and the
remaining arguments are a mix of constants, variables and INTEGER FUNCTION names. The
INTEGER FUNCTIONs are the so-called callback routines. The character string contains the format
codes.

168

An example of a statement involving WINIO@ with just the text string and no other arguments is
given here:

 IA = WINIO@(‘%bt[OK]&’)

%bt is a format code. What is does is specify that a button is inserted into the Window. This
button will have the text label OK on it, and it comes already equipped to respond to mouse
clicks (or presses). The final ampersand (&) is a symbol to say that the window isn’t finished,
and that there are more WINIO@ function calls to come. Especially in the layout of an
application’s main window, there may even be a hundred or more WINIO@ calls. The last WINIO@
call in the series does not have the continuation ampersand. Embedded things like the ‘OK’ are
typically surrounded by square brackets.

24.4 Those 8 things: No. 4 ClearWin+’s format codes

Format codes are always made up of:
• an initial % sign,

• various optional modifier symbols, `~#^. and numerals etc

• a two-letter code

• some optional additional information, usually enclosed in square brackets (but very

occasionally not)

The % and the 2-letter code are always present.

Format codes specify various things in a window:

• Appearance and embellishments

• Layout and positioning

• Input and output

• Commands

• Selection of options

• Graphics

• Menus

Arguments following the CHARACTER string relate to numerical values required by the various
format codes. For example, if I wanted to define a graphics region 200 pixels wide and 150
pixels high, I would have to give those numerical values somewhere, and I would do it with
arguments. A graphics region is a difficult example, because as well as its size, it also needs (at
least) a number called its handle, to distinguish it from other graphics areas. The call for this
would be:

 iHANDLE = 101

 iXsize = 200

 iYsize = 150

 IA=WINIO@(‘%gr&’, iXsize, iYsize, iHANDLE)

The arguments must always come in the right order, and there must be enough of them, and
they must be of the right type.

169

24.5 Those 8 things: No. 5 callback functions

Let us suppose that in a particular window we have a control, such as a button, that is intended
to make the program do something. How do we transfer control to the part of the program that
acts out that control? There are two ways, and one of them relies on what is known as a callback
function. Some controls must always have callback functions, whereas with other controls, they
are optional. A menu is an example of a place where there is always a callback function, but in
the case of a button, it is optional.
 All callback functions must be INTEGER FUNCTIONs. In Fortran-77 style, they are declared as
EXTERNAL (which means that their names may be passed as parameters in SUBROUTINE and
FUNCTION calls). I find it useful to declare the names INTEGER at the same time using a Fortran
90 construct even if you have used IMPLICIT type:

 INTEGER, EXTERNAL :: callback_function_name

But FTN95 doesn’t seem to care about this, and just EXTERNAL will do.
 If you prefer the Fortran 90/95 syntax, and you use MODULEs and CONTAINs, then you can
declare your callback functions within the module where they are used.
 Where a callback is optional, and it is provided, then the special symbol modifier ^ must be
put between the % symbol and the 2-letter format code. So, an example might be:

 INTEGER, EXTERNAL :: BLEEPER

 IA = WINIO@(‘%^bt[Beep]&’, BLEEPER)

And later in the program you may find:

 INTEGER FUNCTION BLEEPER()

C --------------------------

 BLEEPER = 1 ! 2 might work even better here

 INCLUDE <WINDOWS.INS>

 CALL BEEP@

 RETURN; END

Should the user press the Beep button, program control is transferred to the function BLEEPER,
which sounds the computer’s buzzer (that is what the BEEP@ subroutine – an FTN95 standard
function – does).
 All FUNCTIONs have a return code, and the return code in this case is 1, which means “keep the
parent window open ready for more commands”. A return code of 0 means “now close the
parent window”. A return code of 2 is similar to 1, but does not cause the parent window to
refresh itself.

24.6 Those 8 things: No. 6 Libraries

BEEP@ is one of the contents of FTN95’s extensive libraries of standard subroutines and
functions. There are really 2 kinds of libraries. One of them relates to very useful functions that
were developed for FTN77 when it was a DOS (strictly DOS-extended) product, and the other
is specific to ClearWin+. Those useful functions and subroutines that aren’t part of ClearWin+
are described in various places in the online documentation.

The ClearWin+ functions and subroutines are described in the online help files.

170

24.7 Those 8 things: No. 7 Standard Subprograms and Parameters for

ClearWin+

If you take the opportunity to look into the .INS files, you will see that they contain nothing
more than a mixture of interfaces so that you (and ClearWin+) can call the C routines that are
provided as part of Windows, with parameters that are specified by name and their
corresponding values. It’s a big job to understand the contents of the INCLUDE files, but the
names for routines and parameters are the same as those in MSDN. Most of the time, ClearWin+
provides a Fortran ‘wrapper’ for those files, but it is still better to use the parameters by their
Windows’ names, rather than by their strict numerical value. However, there are some
functions that don’t have a ClearWin+ wrapper, and those do need to be called by their
Windows’ name. Those functions are generally for very advanced use.

24.8 Those 8 things: No. 8 Resources

Resources are, in the main as far as ClearWin+ is concerned, a collection of bitmap images
stored as separate files in a variety of formats that you will bind in to your program. These
bitmaps may represent some of the control buttons, pointers or cursors, that you will use. They
may also represent textures, backgrounds, logos and other imagery. The exception is that
hypertext files are incorporated via the RESOURCES section.
 You have 2 ways of listing your resources. Firstly, you can add a RESOURCES section after your
program code. Then, when your program is being compiled by FTN95, the separate resource
compiler SRC is invoked. Alternatively, you can list all the resources in a file – preferably with a
.RC extension, and compile it yourself using the Silverfrost Resource Compiler SRC.EXE. If you
take the second of these routes, an .OBJ file is created that can be linked with SLINK.EXE.
(When using PLATO, the resources file is just another file in a project).
 The content of the RESOURCES section of file is divided into lines of code, each of which has 3
parts:

• A local name

• A type descriptor

• The name of the file that contains the resource

For example:
TIMER CURSOR “TIMER.CUR”

The valid types are:

CURSOR

ICON

BITMAP

IMAGE

HYPERTEXT

All of them are described in the help files.

171

25 Departing from the norm

Early on in the book I produced a sketch of the elements that you often find in a fully configured
Windows application. Often, you do not need all of them. When I covered graphics, I made
everything scalable so that using a pivot with the graphics area the whole window was
resizeable. Sometimes you don’t need a resizeable client area. Then, I suggested that you start
your menu bar with a File menu, and again some forms of application do not require you to save
your data set or even produce a hard copy of your results. Sometimes, a ‘quick and dirty’
Windows interface is all you need.

25.1 Why?

When I entered academic life it was in an engineering department where students were taught
some rudimentary programming using the language Algol, which had a particularly good
implementation on the college mainframe (an Elliot/NCR 4120). However, it was obvious that
Algol was dying, and so a switch to Fortran was made. Some years later, BASIC became all the
rage, and the BBC even produced some educational programs in association with a specific type
of computer called the BBC model B. A discussion ensued as to whether or not Fortran should
be abandoned in favour of BASIC, with the then Head of Department (who was completely
computer illiterate but had other qualities, I suppose) entering the debate with the opinion16
that it wouldn’t be long before all the student entrants would come fully equipped as BASIC
programmers and programming in any language wouldn’t even need to be taught! While this
debate was raging, I bought my first PC which came with an elementary spreadsheet program
called SuperCalc. It was obvious to me that for the simple listing and tabulating programs that
most of the programs were all that most of the undergraduate students would ever write, a
spreadsheet was all they needed.
 In due course, SuperCalc disappeared, and other spreadsheet programs came (and went):
Lotus 1-2-3, Quattro (Pro) and eventually Excel dominated. Many things that are far more
sophisticated than simply listing and tabulating can be done with these spreadsheet programs,
but they do have a steep learning curve to do more, and for me, I find that especially with
ClearWin+, I can do many things that I don’t know how to do with Excel17.
 What follows is an example. The program exists merely to let me understand and try out the
procedures written up, long ago, in a paper in a particular Journal. The framework in which it
runs, however, is little different from that which I advocated right from Chapter 1, although
slightly simplified. There are 2 simplifications. The first is not to have a scalable window,
covered in the following section 26.2. The second departure is to start with initial data specified
not via an input file, but in the program itself. The reasons for the second choice are covered in
Section 26.3. In this program, that initial data is alterable very easily because there isn’t much
of it.

16 He was wrong, of course. Even the best people are wrong sometimes.
17 And feel disinclined to learn. As an enthusiast for aphorisms, one of my favourites is the one about a general
inability to teach an old dog new tricks.

172

Figure 26.1 A Windows framework that doesn’t require a File Menu and is fixed in size. The blue ‘outline’ is the

Windows background when a screen grab was done.

25.2 The graphics

I could not see the point of writing the graphics for this application in a scalable way and so I
defined a fixed graphics area of 1250(H) by 600(V). This does not meet Windows standards
which suggest that a window should display on a monitor with 800 x 600 resolution, but it is
many years since I had a computer with that low resolution and this particular application I
wanted to run either on my desktop where one of the monitors has a 1920 x 1080 resolution,
or on my much slower lightweight travel laptop that has a resolution of 1366 x 768. The size
chosen was a good fit for both.
 Indeed, not only was the size highly suitable for the displays on which I intended to use the
program but also it could be conveniently divided into two areas each of which was 600 x 600
with a 50 pixel gap between the two. In the end the right hand 600 x 600 pixel area was divided
into two vertically and many captions for the axes of the graphs that I drew fitted nicely in the
50 pixel gap.
 As it happened, the drawing in the left-hand side of the window was always going to be wider
than high and as a result this gave space to write things both above and below the actual
drawing. The two graphs on the right-hand side always had the same x axes in every run of the
program although not the same as each other), and that simplified drawing them as only the y
axes needed to be scaled. I could have used three separate %gr areas, but found it quite
convenient to use only one, which meant that I did not need to give any sort of user ID, and the
only difficulty if it can be called that was the need for the graphs to be offset by 600 pixels in x,
and for one of them to be offset by 300 pixels in y.
 Had I wished to fit the whole program onto a laptop with a very limited display capability
then it may have been more sensible to have chosen the vertical dimension of the graphics area
to be only 500 or 550 pixels, and the width to be say 600, and then to provide a switch via a
menu item to go from the display of either the picture or the graphs.

173

25.3 What, no File menu?

The program runs with a default set of data values the physical meaning of which is drawn on
the left-hand side of the pane. This dataset is analysed in two ways resulting in the drawing of
the upper and lower graphs on the right-hand side of the window. For my purposes it was good
enough to be able to see the results I did not need to print them. The dataset was actually very
small and each item in it could be altered independently for which I wrote a set of menu
commands and callback functions following which the analysis and drawing would be simply
redone using the new dataset.
 I did not initially feel the need to put that dataset into a file nor to alter it outside the program
but after a while I found it somewhat irksome to always be presented with the same initial
analysis. I still did not want to put in the complexity of a complete File menu but I wrote a few
lines of code that were necessary to save the last dataset when the program exited and in the
same way, when the program was started again it would pick up that last dataset as its starting
point. I then discovered of course that if I moved the program to a different machine where
there was not a starting dataset then the whole edifice came crashing down so I put in a few
more lines so that if the starting dataset could not be found the program would find its own
initial values in other words a combination of the two approaches!
 I was therefore able to do away with the complete file menu as even File/Exit is somewhat
surplus as there is the close box at the top right of the window and if that was not enough, I had
added a minimise icon and that allows the system menu to be opened in which there is an
additional exit option.

25.4 Menus

There isn’t much point in having a toolbar if the menu items do not have their own drop-down
lists of sub-menus, although in the case of this program the Help menu does have two items
since it contains not only instructions on the use of the program although those are contained
in a single dialog box as the program itself is rather simple, and an About box. Both the
instructions and the About box are simply vanity exercises in this case, but both are required if
you intend anyone other than yourself to ever use the program.
 Similarly, there isn’t much point in having a status bar, and the intended function of the
program means that there isn’t any point in making the window scalable.

25.5 Program organisation

The main routine of the program is actually rather short, because after all the COMMON blocks it

is simply:

 INCLUDE <WINDOWS.INS>

 INTEGER, EXTERNAL:: KB_EDIT_GEOM, KB_EDIT_PROPS, KB_EDIT_WATER

 INTEGER, EXTERNAL:: KB_RUN, KB_EDIT_CIRCLE, KB_EDIT_RANGE

 INTEGER, EXTERNAL:: KB_HELP, KB_ABOUT

 CALL STARTUP ! defines initial properties

C ... build the Windows framework with ClearWin+

 IW = WINIO@('%ca[Spencer method (1967) test]&')

 IW = WINIO@('%mi[SPEN]&')

 IW = WINIO@('%sc&', KB_RUN)

 IW = WINIO@('%mn[Geometry]&', KB_EDIT_GEOM)

 IW = WINIO@('%mn[Range]&', KB_EDIT_RANGE)

 IW = WINIO@('%mn[Water]&', KB_EDIT_WATER)

 IW = WINIO@('%mn[Circle]&', KB_EDIT_CIRCLE)

174

 IW = WINIO@('%mn[Properties]&', KB_EDIT_PROPS)

 IW = WINIO@('%mn[Help[Instructions,|,About]]&', KB_HELP,

 & KB_ABOUT)

 IW = WINIO@('%gr', 1250, 600)

 CALL CLOSEDOWN

 END

The STARTUP routine reads the previous dataset, written the last time the program ran in

subroutine CLOSEDOWN. As mentioned, the minimise icon and the entirety of the Help menu are

vanity, and each of the data change callback routines is little more than:

 INTEGER FUNCTION KB_GEOM()

C Various COMMON blocks went in here

 INCLUDE <WINDOWS.INS>

 IW = WINIO@ ('%ca[Edit geometry points]&')

 IW = WINIO@ ('x1 %rf y1 %rf&', X1, Y1)

 IW = WINIO@ ('%nl&')

 IW = WINIO@ ('x2 %rf y2 %rf&', X2, Y2)

 IW = WINIO@ ('%2nl%rj%8bt[OK]')

 CALL CALC_AND_DRAW

 KB_EDIT_GEOM = 2

 END

There aren’t any checks, and no limits are specified, as it doesn’t really matter if the program
crashes!
 Subroutine CALC_AND_DRAW is where all the work is done, and most of that is associated with
the calculations. All text that is drawn is at fixed coordinates and uses the default font and font
size. I found that I wanted a single Greek letter (gamma) and for simplicity, cut a section out of
a screen capture and made it into a small bitmap that I pasted in position.

175

26 Fools rush in

There are many aspects of FTN95 that way exceed my needs, and the title of this chapter is a
curtailed form of the full quotation, which implies that there are places where Angels fear to
tread. I’m no Angel, and it isn’t always fear that has kept me from many of the aspects of FTN95
and ClearWin+ - usually it has been a question of need (or not). My ambition in this book is to
give you information that you can’t glean from FTN95’s online help, but which you have to learn
by other means. It isn’t intended to include or to replace those help files, but sometimes has to
duplicate them in part.
 The list of things I haven’t covered is extensive, and in particular in respect of Fortran source
codes and compilation, I have skipped over:

• The 64-bit compiler
• Compiling in debug mode(s)
• Debugging
• Visual Studio and FTN95 for Microsoft .NET
• Compiler optimisations

I have said nothing or almost nothing about the third-party graphics libraries and applications
SIMFIT and SIMDEM, and glossed over SimplePlot.

There are also quite a number of format codes that haven’t made it into this book. The whole
point is that at some time or other, curiosity will get you looking at what’s on offer, and you will
explore the help files without my bidding. For example, I’ve said nothing about TreeView and
BranchView (%tv and %bv), but some of their philosophy of use is similar to ListView (%lv) and
if you want them, you’ll have to teach yourself.

26.1 Inter-process communication

You can get two programs compiled with ClearWin+ to ‘talk’ to each other. They do this through
Windows messaging. Assume that you have a master program and a servant program. The
master program may well have a button in a toolbar that you want to send a message. Maybe it
starts the servant program. Here is the callback function for that toolbar button, which launches
the servant program Servant.EXE, in the example below without a datafile. Now, we don’t want
multiple Servant(s) all answering the same button press, and one way of doing that might be
to grey out the toolbar button that called it up. Another way to do it is to ask is Servant.EXE is
already running. Now the Servant program ‘knows’ that it has a ‘class name’ of BUTLER, so we
broadcast a message to BUTLER asking, in effect, ‘are you already running?’ This is done in the
code fragment with the message ‘RUNNING’, sent using the function SEND_TEXT_MESSAGE@,
which also has a return possibility REPLY.

 INTEGER FUNCTION Launch()

C -------------------------

C

C Launch Whatever.exe

C

 INTEGER START_PPROCESS@, SEND_TEXT_MESSAGE@

176

 CHARACTER*(25) REPLY

 INCLUDE <WINDOWS.INS>

 IA = SEND_TEXT_MESSAGE@ ('BUTLER', 'RUNNING', REPLY)

 IF (REPLY .NE. 'YES') THEN

 IA = START_PPROCESS@ ('Servant.EXE',' ')

C … IF IA isn’t 0, then the secondary program didn’t start

 ENDIF

 Launch = 2

 END

Now, in the Servant.EXE program we have to tell it what classname to use with %nc, and what
the return message callback should be:

C ... setting the class, and a callback function to respond to

C messages

 IA=WINIO@('%nc[BUTLER]%rm&',MESSAGE_FN)

Now, if the Servant receives a message ‘RUNNING’, the callback replies ‘YES’, which tells the
Master program not to START_PPROCESS@ to launch another copy. I have added the response to
a ‘CLOSE’ command, which will close down the Servant.EXE program.

 INTEGER FUNCTION MESSAGE_FN()

C -----------------------------

C

C This is the message handler

C

 CHARACTER*(255) MESSAGE

 INCLUDE <WINDOWS.INS>

 MESSAGE = CLEARWIN_STRING@('MESSAGE_TEXT')

 IF (MESSAGE .EQ. 'CLOSE') THEN

 MESSAGE_FN = 0

 RETURN

 ELSE IF (MESSAGE .EQ. 'RUNNING') THEN

 CALL REPLY_TO_TEXT_MESSAGE@('YES')

 ENDIF

 MESSAGE_FN = 1

 RETURN

 END

Now, in these code fragments you can see not only the sending of messages, but what to do if
they are received, and how to return messages. Indeed, if you know the Class Name of a program
you didn’t write yourself, you can send it messages – although what reply you might receive,
and whether the message you sent would be understood, let alone acted on, is beyond me.
 In my example, I have a sort of pop-up calculator application that tells the user the result of a
specific calculation, independent of the calling program. You could launch multiple instances of

177

a program to do a task for you. However, you need to launch fewer minions than there are CPU
cores, as Windows might just queue them up to use its favourite core!
 Minion apps can communicate using Windows messaging, but they can also communicate by
leaving files, say on a particular disk, or even on say a network attached storage or fileserver if
running on different machines. The possibilities, I suspect, are endless.

26.2 Shared memory

You can share memory, and for that matter, files between two of more Fortran programs. The
instructions for doing so can be found in the online help file under ‘Extended ALLOCATE
statement’

26.3 Using all the CPUs

Early speed improvements with PC processors were obtained by increasing the clock speed, or
basically making the CPU run faster. Another speed improvement was by adding an x87numeric
co-processor, which speeded up some arithmetic operations and function evaluations. X87
numeric co-processor functions became a standard functionality about the time of the
introduction of 80486DX CPUs, and x87 code is used by the 32-bit version of FTN95. At about
the same time, CPUs were speeded up by not only increasing the external clock speed, but
multiplying that clock speed internally. Then, gradually, CPUs had additional cores internally.
It took some time for Windows to learn to spread its workload over multicore CPUs, but it does
so now. A further step was adding instructions so that multiple arithmetic operations can be
done at the same time, basically by stealing the stack of registers in the x87 part of the CPU. 64-
bit FTN95 does that, not explicitly using x87 as it was originally intended.
 The question is, can we write Fortran programs that spread their workload over multiple CPU
cores? The answer has many dimensions, including the fact that some cores are faster than
others, some use more power or generate more heat, and in short, it isn’t always obvious what
gains there are in practice, when you’d probably have to fight Windows’ allocation of jobs to its
minions. I have little doubt, however, that ways will be found, and that FTN95 will allow some
of them to be employed.

You should read the interesting, but complex, Notes_on_parallel_processing.txt file that
FTN95 slips unobtrusively into its documentation folder! (and everything else there that
catches your eye).

178

27 How I came to write this book

Maybe I was just bored. Maybe, I’d written reams to various other folks embarking on updating
their existing Fortran programs to run inside a Windows GUI. Perhaps it was when I found
myself writing pretty much the same information in yet another email to someone else. Or
maybe it was just vanity. Possibly I just wanted to leave a memoir, Or, indeed, that I felt
charitably inclined. There is, of course, the likelihood that it was all of those things.

27.1 About me

I am a Geotechnical Engineer, and not a programmer, although I have been programming
computers since 1970. In my career, I took 3 degrees: a BSc in Civil Engineering, an MSc in Soil
Mechanics, and a PhD. Along the way I became a Chartered Engineer and a Fellow of the
Geological Society of London, and after some years working in Consulting firms I found a job in
Academia, where I rose to a full Professorship. I retired from that job, as one does when one
reaches a certain age, but have continued in various roles, for example being the Chief Scientific
Editor of the Quarterly Journal of Engineering Geology and Hydrogeology for 5 years (as well as
being on the Editorial Board even before that), and I have continued with consulting work and
when the opportunity arises, mentoring students and potential aspirants to becoming
Chartered.
 I know that I program Fortran in an old-fashioned and somewhat pedestrian style, learnt
when Fortran was in its comparative infancy, and although I prefer to do it that way, have no
objection whatsoever with people choosing a different programming style. The choice is yours.

27.2 In the beginning

My own introduction to Fortran began in around 1970 when I had been attempting to program
something on an Elliot-NCR 4120 computer using Algol 60, and that machine suffered a fire,
and was replaced by an IBM 1130. The IBM only had a very restricted version of Fortran, and I
only ever got the re-programmed application working properly a few years later when I had
access to better hardware – the CDC 6400 at Imperial College.
 Gradually, card and tape input to standalone systems gave way to terminal access, and late in
1983, I bought one of the first serious PCs to appear in Britain. Part of the appeal was the
availability of Fortran, at which by then I was reasonably adept. It was Microsoft Fortran, a
subset compiler, and was version 3.3
 In my job as a lecturer at Kingston Polytechnic, I was required to attend and teach on the
annual field courses in topographic surveying18. I soon gravitated to teaching certain tasks, to
which I was best suited by temperament, using particular equipment that I liked using. As I was
an enthusiastic participant in this exercise, the colleague (the late Wilf Schofield) who ran the
exercise left me to do what I liked best. I had done field surveying at Portsmouth when I was a
student, over the course of 3 weeks on the Isle of Wight (based in a Youth Hostel in an old chapel

18 There was an end of summer term course with a big group of degree students, and a start of Autumn term course
for HND students – a much smaller group. Roger Curtis gravitated to running the HND courses, usually aided by a
much smaller and more select group of colleagues. I ran his course one year while he was on Sabbatical leave with
the help only of Keith Shepherd – neither of us surveyors – and 10 students. Eventually all the courses were held
at Sussex, due to building at Royal Holloway.

179

in St Helens village), but in comparison, Wilf Schofield’s week-long courses were brilliantly
organised and far more effective.
 The tasks in this course, which by the time I had joined Kingston’s staff group were being held
alternately at Royal Holloway College and the University of Sussex in Brighton, were to make a
survey of the relative positions of a number (6 to 8) set points called Major Control Stations, by
measuring the angles round a closed polygonal path from station to station, and the distances
between them19. This involved not only the field measurements forming a Traverse, but also a
computation, followed by a distribution process for the inevitable slight errors, called
Bowditch’s Correction. Back in 1973, there were no hand-held calculators, computers were too
big and fragile to transport, and slide rules on which the majority of calculations were done
simply lacked the accuracy to do the calculations. At Portsmouth when I was an undergraduate,
we had used 7-figure logarithms, but Kingston had a programmable desktop calculator
(Hewlett Packard model 9810A) on which another colleague (the late Brian Merrony) had
produced several programs that were stored on magnetic cards.
 Of course, only a subset of the students were involved with measuring the angles and
distances of the main traverse, but others were involved in the base room gridding up a 2m x
1m sheet of film on which a map would be prepared, while others were out with other staff
colleagues reconnoitring other Minor Control Traverses20 winding between the Major Control
Stations, and representing a series of stations, marked with pegs, from which the various
buildings, paths, roads and so on in the campus could all be seen. In turn, these Minor Control
Traverses were surveyed in terms of angles and distances, with coordinates then calculated by
means of another of Brian Merrony’s programs.
 The programs were a revelation to me, as they brought the 3 weeks of the Portsmouth course
down to a single week – and a week that was far more productive of practical surveying. Within
a few days, the various major control and minor control stations appeared in their proper
coordinated positions on the base map.
 In an equally parallel operation, other student groups were setting surveying instruments up
on the various control stations, and recording the outlines of buildings, paths and roads etc by
means of a combination of angles and distances21. The problem was that there was no program
to treat this information, and students had to sit down in their groups and plot it out with a big
protractor and scale rule.
 As the years passed, the technology improved, and distances that were originally measured
electronically using huge, ponderous, devices were measured more rapidly with smaller and
more accurate machines, and other optically-based distance measurement procedures were
replaced by the electronic systems. Eventually, even the major control was measured with GPS.
Moreover, the HP9810A was replaced by a far more capable HP9845 with programs in Basic

19 In 1973, distances were measures with an AGA model 6A geodimeter, powered by car batteries and barely
portable, and angles by a Wild T2 1-second theodolite. Later, we used a Kern 1-second theodolite, which
employed a telescope-mounted DM501 electronic distance measurement system. After a couple of years, the
optical theodolite was traded in for an E1 total station (also using the DM501). When Kern was absorbed by
Wild, a number of these total stations were obtained, and they served until replaced by some beautiful Leica (and
less beautiful Sokkia) integrated total stations, and eventually by a Leica GPS system.
20 In the beginning, these surveys were done with a Wild or Kern precision tacheometer, or by using a subtense
bar. Eventually, top-mounted accessory EDM systems were obtained. These were mounted on Kern, Wild and
Watts theodolites with varying degrees of success. Later, the Kern total stations were a favourite until in turn
they were replaced by the Leica and (less successfully Sokkia) total stations.
21 For those interested in surveying, as well as the Zeiss BRT 006 rangefinders, we also used self-reducing
tacheometers by Wild and Kern until there were enough EDMs to supplant them.

180

written by a student for his project, and when that fell by the wayside, another colleague, Bill
Evans, wrote an integrated22 suite around a PC running Quattro Pro.
 The problem of plotting the fine detail remained insuperable. Attempts were made to deal
with it by investing in a Zeiss BRT006 rangefinder system, which could produce a simple plot
using a pantograph mechanism called a Karti Table. This was so successful that a second set
was bought. But groups of students still used the old protractor and scale rule, and still made
many of the old mistakes, and still took days plotting.
 Once the detail appeared on the base map (usually traced through from smaller surveys
slipped under the gridded film), Wilf Schofield would lead the students through a process of
designing the centreline of a road to weave round the campus in the form of a series of straights
and circular curves. Eventually, the coordinates of the intersection points, the curve tangent
lengths and so on were measured off the plan, and using the appropriate program(s) – initially
Brian Merrony’s cards for the HP9810A, then the student’s Basic program, and later Bill Evan’s
spreadsheet solution – would provide the angles and distances for students to go out in the field
and set out with pegs and ranging rods the centreline of that road.
 The problem with the detail surveys always remained, and returned with a vengeance when
students opted to use hi-tech total stations instead of the very Germanic, but old-fashioned
looking, Zeiss BRT machines.

27.3 A sea change

23

An initial solution came about when I took one of my Apricot computers to survey camp one
year. About midway through the course I disappeared for a couple of days24, and programmed
up a solution to the detail plotting problem with the aid of an A3 pen plotter interfaced to the
PC through an RS232C interface. I had written “Fortran and the Art of PC programming” with
Tim Ward and produced a program into which the students could enter some simple
parameters, their angles and distances, and the pen plotter would plot out their observations,
point by point, even joining consecutive points if told to. I named this program “Tacheo” as the
surveys of this kind are called Tacheometry – and that was too long. The program was an instant
success, and within a year, we were running three Apricot PCs (gifted to the department by Nick
Lambert and Rob Higginson, both Kingston ex-students, and their company Soils Ltd) and 3
Roland plotters on survey course to plot the details. I took the opportunity to tidy the program
during the following year, and to make use of the simpler Centronics parallel interface, and the
compiled program was used on survey courses without modification for nigh on 15 years,
during which time the computers were replaced with more powerful machines. A critical
moment occurred when the IT department upgraded the machines to Windows 2000. This
operating system had the habit of buffering output into 512-byte blocks, so sometimes nothing
would happen, and then a plotter would madly dash off and plot a dozen points, before
appearing to go to sleep again – Tacheo was written to plot a point as soon as its data was
entered. I knew that the end was nigh for Tacheo.

22 It wasn’t very integrated at first, but it evolved.
23 Wm Shakespeare for this one: Ariel’s song in The Tempest
24 In those far-off days, the number of students was small, and they had already done a shorter field course in
Richmond Park. Towards the end of the week the students more or less got on with it unattended, and staff retired
in groups for long coffee and tea breaks where some would collaborate on the Guardian Crossword, and others
would hatch plans for improvements to course organisation. Latterly, the Telegraph Crossword has been favoured.
However, student numbers rose, and some staff made it very clear they had no interest in surveying, courses were
run multiple times to eke out the availability of instruments, and such luxuries went by the wayside.

181

27.4 ClearWin+

I had experimented with ClearWin, and indeed, I attended a launch event at Salford in around
1992. However, Salford FTN77 (as it was then) was fine for running traditional applications,
but ClearWin+ still needed the DOS extender DBOS, and this was a pig to install. It only became
a practical proposition with Windows 32-bit mode, effectively Windows 2000. I reprogrammed
Tacheo from start to finish, this time with a Windows look and feel, and plotted the survey on
the screen as it was input. Only at the end did I arrange for the plot to be unleashed via those
Roland plotters. To my astonishment, students took to it like ducks to water, it worked
faultlessly “out of the box”, and was a great success. Some had already been known to turn their
noses up at the DOS version, and Bill Evans soon coined the phrase “Steam Tacheo” to denote
the older version. It was never run again: like a genuine steam engine, it was sent to the
scrapyard.
 I had seen the light. I also saw one or two improvements I should like to make (which I did)
and started to consider the day that the Roland plotters would not work – they were showing
signs of wear. The day came faster than I anticipated, and the very next year, with rising student
numbers on the courses, I had to implement the correct-to-scale output on dot matrix printers,
of which some 4 A3-size printers materialised to replace the plotters. Once again, the code
worked “out of the box” (to my surprise and relief) and apart from a few glitches and
improvements, that was that. WinTacheo (as it is now called) continues to be used, as it has
done now since 2005, with occasional small tweaks driven mainly by aesthetics, and very
occasionally by real need, like stopping students specifying a scale that needed printout over
hundreds of sheets (e.g. a scale of 1:1) – the multiple sheet option being one of my pet ideas, as
bigger than A3 printers would not be portable enough to take on the course.
 We knew that Bill Evans was angling to retire early, and his Quattro Pro spreadsheets were
incomprehensible to anyone else, and Quattro Pro was changing anyway. I therefore resolved
to write the successor to Bill Evan’s spreadsheet in an all-encompassing application called
SCAMPS (Survey Course Master Program System – or maybe Survey CAMP System?), and this
came online in 2012, with a few teething issues resolved the following year, both after I had
retired from teaching at Kingston. SCAMPS is altogether more ambitious than WinTacheo, and
covers the analysis of traverses and calculation of road setting out details, together with
associated graphics.
 I also developed a program for analysing intersection and resection problems in surveying
called StationMaster, and a program for recording levelling survey called LevelBook, plus a tiny
application called Janus to simplify the problem students have of subtracting one set of degrees,
minutes and seconds from another.
 While Brian Merrony probably saved students weeks away from home on courses over a
decade, my software has saved greater numbers of students a day or two each – but over nearly
three decades! As I am now retired from this part of University life, it is my hope to keep these
programs running for colleagues until GPS makes a complete takeover of the surveying. They
certainly work under Windows 7 and 8, 8.1, 10 and 11! Back in 2005 I programmed in parallel
with WinTacheo a program for plotting GPS detail surveys, and this could be resurrected and
updated rather quickly, I suspect.
 Also in parallel with this work on topographic surveying, I had begun to write ClearWin+
codes for some programs connected with my Geotechnical Engineering professional and
research interests. This started around the turn of the millennium, but really took off after my
success with WinTacheo.
 As it is, I have been programming seriously with the ClearWin+ system for well over a decade
and approaching two, and although there are still things I have yet to master, this book contains
much of the experience I have gained by dint of trial, error, and a great deal of agonising. There

182

is no single way to programming – in Fortran or ClearWin+ - and I have tried to write as though
I am offering suggestions and solutions, not laying down hard and fast rules. I have my own
preferred way of doing things, and this shows through in my example codes. I am a fairly
pedestrian programmer, eschewing sophisticated solutions for “plodding”, and maybe this
won’t be entirely to your tastes. However, it should make it easy to understand what I am on
about.

27.5 Geotechnical software

Despite my lengthy description of topographic survey programs written for student use during
field courses, most of my programming has been devoted to software in my chosen field of
geotechnical engineering, with the odd foray into structural engineering. I became an early
adopter of computer graphics, firstly through the use of flatbed and drum plotters, and only
when PC graphics matured and ClearWin+ became accessible have my programs used the
screen to full effect.
 Geotechnical engineering applications often use a limit equilibrium approach (a sort of
bastardised plasticity method) or a continuum approach for which I started to use the finite
element method as long ago as 1971. My programs are usually for my own use, or by research
students and close colleagues, but I have been close enough to the commercial software market
to have some firm ideas about Help and support!

27.6 The ultimate programming pedestrian

My Fortran Rules are simple, and are as follows:

1. I learnt Fortran in the era of 72 column cards, and I stick to that line length and the card

image format. If you can manage to understand codes that need to spread out over longer
lines, then I sincerely hope that you are able to understand what it all means 50 years on
from when you wrote it!

2. When Backus invented Fortran, he invented IMPLICIT typing. I still use it. One of its
advantages is that I can look at a variable name and instantly know if it is INTEGER or REAL.
Modern fashion dictates IMPLICIT NONE, which confuses me, and requires lots of
declarations I can’t be bothered with. In this book, the IMPLICIT typing has saved a lot of
lines.

3. I quite like statement numbers, especially to terminate DO statements, as the number itself
provides an “outdent”, and reading the DO statement I can see more clearly where it ends.

4. Statement numbers are used with a regular ‘stride’ (usually 10) and increase
monotonically through a subprogram.

5. FORMAT statements are listed at the end of a subprogram.
6. I stopped using 1, 2, 3, 4 etc as statement continuation markers in column 6, and replaced

them all with &. That means that should I need to in future, I can turn my code into free
format by adding & to the end of preceding lines – something I sometimes do in column
73 anyway.

7. I got hooked with ! for inline comments, but I stick with C in column 1 (mostly).
8. Sometimes to shorten code in the Silverfrost Forum and elsewhere I put multiple

statements on one line, dividing them up with ; particularly very short statements like
the final assignment in a FUNCTION followed by END. The downside of doing this is to make
the code look rather odd - to my eyes at least.

9. I still use COMMON, including the named variety – a lot.

183

10. I dabbled with INCLUDE, but concluded that I liked to see my declarations in the source
code, and the only INCLUDE I use is WINDOWS.INS (although that file is home to 3 ‘nested’
INCLUDEs).

11. I sometimes indent, but not always, and only for IF statements, not DO loops.
12. I sometimes initialise a whole array in one statement – but always put a comment in as I

know that I won’t understand later what I’ve done!
13. I can’t understand MODULEs and CONTAINS, so never use them.
14. There is a point to Statement Functions, although these are a vile construct. When I use

them, I remember the old adage “He who sups with the Devil should use a long spoon” and
to highlight my usage with the appropriate comments.

15. I hate KINDs.
16. I can’t help it, I use STOP and/or RETURN before END.
17. My programs never need to ALLOCATE anything.
18. I can’t see the point of CASE, WHILE, and a whole bunch of other DO loop alternatives.
19. Subroutines and functions need to be as short as I can arrange them to be.
20. I program in capitals, and reserve lower case for comments. I can’t follow codes written

all in lower case, especially combined with great long length lines. It’s even worse when
the comments are in a foreign language as they sometimes are in the Silverfrost forum!

21. Apart from WINIO@, I don’t use EXTERNAL.
22. I use plenty of white space, both within and between subprograms.

They are my rules for myself, and they are not a set of rules for you, the reader. Your rules are
whatever you want them to be.

I really only have one hard and fast rule with ClearWin+, and that is to make the WINIO@ call
statements have as few format codes as possible. Sure, this proliferates statements, but it
simplifies each of them. I then group the statements by function and separate those different
functions with blank lines – or for the main window, into subroutines.

184

Appendix A: A routine for plotting arrows

This routine draws 10 different arrow types (N_ARROW) which may be colour filled (N_FILL =
1) or simply outlined (N_FILL = 0). KOLOUR is the colour value returned by a call to RGB@. The
apex of the arrow is at real world coordinates (X1,Y1) and the real world tail is at (X2,Y2). The
‘database’ of relative X and Y coordinates is set up in the DATA statements, with the start position
in the database for each type of arrow specified in the array of N.
 The routine could be easily modified to draw a different coloured outline to the fill, but in that
case the fill should probably be done before the outline. The source code is:

 OPTIONS (INTL, DREAL)

 SUBROUTINE ARROW (X1, Y1, X2, Y2, N_ARROW, KOLOUR, N_FILL)

C **

C * THIS SUBROUTINE PLOTS 10 DIFFERENT ARROW SYMBOLS. *

C * THERE ARE TEN OF THESE, CALLED BY *

C * THE VALUE OF THE PARAMETER "N". THE APEX OF THE *

C * ARROW IS PLOTTED AT (X1,Y1) AND THE PEN FINISHES *

C * AT COORDINATES (X2,Y2) WHICH IS THE TAIL. *

C **

 DIMENSION X(72),Y(72),NBASE(11), iXX(70), iYY(70) ! Internal info

 COMMON / CW_SCALING / iWIN_Handle, IXRES, IYRES, SCXY, XMID, YMID

C CW+ Graphics handle, screen pixels in x & y, scale factor in

C real-world coords per pixel, real world x & y coords of centre

C of screen.

 INCLUDE <WINDOWS.INS>

C ----------------------------- STATEMENT FUNCTIONS ----------------

 IPOSX(XX) = (XX-XMID)/SCXY + IXRES/2 + 0.5

 IPOSY(YY) = IYRES/2 - (YY-YMID)/SCXY + 0.5

C --

 DATA X/1.0, 1.0, 0.0, 1.0, 1.0,

 1 0.5, 0.5, 0.0, 0.5, 0.5, 1.0,

 2 1.0, 1.0, 0.0, 1.0, 1.0,

 3 1.0, 1.15, 0.0, 1.15, 1.0,

 4 1.0, 1.0, 0.35, 0.65, 0.35, 0.0,

 5 0.35, 0.65, 0.35, 1.0, 1.0,

 6 1.0, 1.0, 0.475, 0.665, 0.5, 0.0,

 7 0.5, 0.665, 0.475, 1.0, 1.0,

 8 1.0, 1.0, 0.5, 0.57, 0.0, 0.57,

 9 0.5, 1.0, 1.0,

 A 0.0, 0.25, 0.0, 0.25, 0.0, 1.0,

 B 1.0, 1.914, 1.414, 0.0, 1.414, 1.914, 1.0,

 C 1.0, 2.0, 1.0, 0.0, 1.0, 2.0, 1.0/

 DATA Y/0.0, 0.1667, 0.0, -0.1667, 0.0,

 1 0.0, 0.0833, 0.0, -0.0833, 0.0, 0.0,

 2 0.0, 1.8, 0.0, -1.8, 0.0,

 3 0.0, 0.1667, 0.0, -0.1667, 0.0,

 4 0.0, 0.1, 0.1, 0.375, 0.375, 0.0,

 5 -0.375, -0.375, -0.1, -0.1, 0.0,

 6 0.0, 0.14, 0.14, 0.335, 0.5, 0.0,

 7 -0.5, -0.335, -0.14, -0.14, 0.0,

 8 0.0, 0.075, 0.075, 0.175, 0.0, -0.175,

 9 -0.075, -0.075, 0.0,

 A 0.0, 0.5, 0.0, -0.5, 0.0, 0.0,

 B 0.0, 0.914, 1.414, 0.0, -1.414, -0.914, 0.0,

 C 0.0, 1.5, 1.5, 0.0, -1.5, -1.5, 0.0/

185

 DATA NBASE / 1, 6, 12, 17, 22, 33, 44, 53, 59, 66, 73/

C --

 DELX = X2-X1

 DELY = Y2-Y1

 VECTOR = DSQRT (DELX*DELX + DELY*DELY)

 IF (DELX .EQ. 0.0D0) DELX = 1.0D-10

 ANGLE = DATAN2 (DELY, DELX)

 CA = DCOS (ANGLE)

 SA = DSIN (ANGLE)

 NB = N_Arrow

 IF (NB .LT. 1 .OR. NB .GT. 10) NB = 2

 K = NBASE (NB)

 LB = 1

15 CONTINUE

 XK = X(K)

 YK = Y(K)

 XP = (XK*CA - YK*SA)*VECTOR + X1

 YP = (XK*SA + YK*CA)*VECTOR + Y1

 IF (K .EQ. NBASE(NB)) THEN

 iXX(1) = iPOSX(XP)

 iYY(1) = iPOSY(YP)

 K = K + 1

 GO TO 15

 ELSE IF (K .LT. NBASE(NB+1)) THEN

 LB = LB + 1

 iXX(LB) = iPOSX(XP)

 iYY(LB) = iPOSY(YP)

 K = K + 1

 GO TO 15

 ELSE IF (K .EQ. NBASE(NB+1)) THEN

 CALL DRAW_POLYLINE@ (iXX, iYY, LB, KOLOUR)

 IF (N_Fill .NE. 0) THEN

 iXX(LB+1) = iXX(1)

 iYY(LB+1) = iYY(1)

 CALL DRAW_FILLED_POLYGON@ (iXX, iYY, LB+1, KOLOUR)

 ENDIF

 ENDIF

 RETURN

 END

The routine was originally written in the era of pen plotters and these arrows are intended to
be drawn as relatively large features on a drawing surface. Typical examples of use include
North arrows, road markings, load vectors on structures et cetera. It can easily be modified to
permit a different colour for the outline than for the fill, but if that is done, I suggest drawing
the outline after the fill and that might change the logic slightly.
 Engineering drawings indicate scale by a number of means including by drawing grids
(Appendix B), scale bars and dimension lines. The arrowheads in the arrow routine above are
not intended for dimension line work because the arrowheads scale with the length of the shaft.
The same basic methodology can of course be used for dimension lines, but you would have to
write your own routine. If you do so, then the scaling of the head is typically a function of the
line thickness rather than the length of line. The dots per inch setting can be obtained for the

186

drawing surface and the head scaled appropriately. If the line is relatively thick then you should
not carry it through to the complete end, because that will give a square tip to the arrow head
and it is better to hold the line back so that a proper point appears on the arrow. When applying
a numeric dimension to a dimension line it is necessary to blank out the middle of the dimension
line so that the text is readable and not overwritten over the line itself. When using raster
graphics, you can draw the whole line and then draw over it in white, but on a vector graphics
device like a pen plotter, you have to compute the gap and not draw it in the first instance.

It is possible to modify this routine to draw arbitrary symbols instead of arrows, in which case
it is only really necessary to change the lists of coordinates to match the symbols, for example
5 and 6 pointed stars etc. I had the equivalent routine to draw characters, but ClearWin+ has
ample facilities (unlike the pen plotters of old, where the font scaling was different from
manufacturer to manufacturer, there might not be italic or Greek letters, and so on).

Figure A.1 A selection of arrows drawn over a grid (see Appendix B).

187

Appendix B: A routine for plotting grids

 SUBROUTINE Draw_GRID (Grid_Step, Line_Kol)

C --------------------

 IMPLICIT DOUBLE PRECISION (A-H, O-Z)

 INCLUDE <WINDOWS.INS>

 SAVE

 CHARACTER*(8) DUMB

 COMMON /Extents/ XMin, XMax, YMin, YMax

 COMMON /SCALING/ SCRN_SCALE, P2X, P2Y

 COMMON /VIEW/ IHDC, IXRES, IYRES

 COMMON /HardCopyMap/ IS_HARD_COPY

C --

 CALL SET_LINE_STYLE@ (PS_SOLID)

C

C ... Set number of grid lines to draw (Sept 2007 code from WinTacheo!)

C

 ONSCRN_XMIN = P2X - SCRN_SCALE * IXRES/2

 ONSCRN_YMIN = P2Y - SCRN_SCALE * IYRES/2

 NGRIDSX = (SCRN_SCALE * IXRES)/GRID_STEP + 1

 NGRIDSY = (SCRN_SCALE * IYRES)/GRID_STEP + 1

 NGRIDS = MAX (NGRIDSX, NGRIDSY) + 1

 DO 110 I=1, NGRIDS + 1

 NGY = (INT(ONSCRN_YMIN/50)+I-2)*Grid_Step

 NGX = (INT(ONSCRN_XMIN/50)+I-2)*Grid_Step

 AGY = NGY

 AGX = NGX

 IX = (AGX-P2X)/SCRN_SCALE + IXRES/2 + 0.5D0

 IY = IYRES/2 - (AGY-P2Y)/SCRN_SCALE + 0.5D0

 IF (IY .LE. IYRES) THEN

 CALL DRAW_LINE_BETWEEN@(0, IY, IXRES, IY, Line_Kol)

 ENDIF

 IF (IX .LE. IXRES) THEN

 CALL DRAW_LINE_BETWEEN@(IX,0, IX, IYRES, Line_Kol)

 ENDIF

 IF (IX .GE. 20) THEN

 WRITE(DUMB,'(I6)') NGX

 CALL ROTATE_FONT@(90.0D0)

 CALL DRAW_CHARACTERS@ (DUMB, IX+15, IYRES, Line_Kol)

 ENDIF

 IF (IY .LE. IYRES-50) THEN

 WRITE(DUMB,'(I6)') NGY

 CALL ROTATE_FONT@ (0.0D0)

 CALL DRAW_CHARACTERS@ (DUMB, 0, IY, Line_Kol)

 ENDIF

 110 CONTINUE

 RETURN

 END

188

Appendix C: Contouring

C.1 The simple algorithm

I am afraid that my routine for contouring an irregular area is a bit long to present in this book
but the principles are very simple and in this instance are easier to describe than to
demonstrate - in contrast to the normal situation in life when it’s easier to show someone than
to describe what they need to do.
 Contouring may be done with line contours or coloured bands. In both cases an essential
prerequisite is to divide the area to be contoured into triangles within which the variation of
the quantity to be contoured varies linearly or approximately so. Some algorithms in analysis
operate using triangles in the first instance and others with shapes that are very easily divided
into triangles.
 You then decide what the contour interval is to be, and given the total range of field values in
the problem, how they are distributed. If you have both positive and negative values, then the
contours are distributed on both sides of zero. If you only have positive (or negative) values
then the question is whether or not to divide the problem into a finite number of intervals with
irrational contour levels or whether to again take a base of zero and then accept, for a given
contour interval, however many contours there should be.
 The first step with each triangle is to examine the field values at each corner or node. If they
are all the same, or all three lie within one contour band then with line contours nothing needs
to be drawn, whereas with area fill the colour selected needs to be appropriate to the contour
band, and the triangle is drawn filled with that colour.
 The second case is a triangle where two nodes have the same value, but the third is different
either higher or lower. Initially, fill the triangle with the colour appropriate to the values that
are the same, and then proceed to draw successive triangles using the remaining apex node and
two points established by linear interpolation along the sides between that remaining apex
node and the side where the two points are the same. This procedure may require working to
successively higher-level contours, or lower. Instead of requiring area fill a line contour is
simply a matter of drawing the line.
 I have assumed that you are working with the ClearWin+ functions and a Windows printer so
that the painter’s algorithm applies, that is you only see the last colour and the later graphics
areas obscure the earlier. It slightly more complicated if the painter’s algorithm does not apply
and that earlier colouring shows through.
 The third case is where all three nodes have different values. The simplest way of treating
this is to divide the triangle into two further triangles with a point on the side between the
lowest and highest values picked to match the node value that is intermediate. Each of the
triangles then becomes case 2.
 A version of this algorithm (more or less, and for line contours) was published in Byte
magazine, but I see in the development notes for a graphics program of my own that I had
developed it independently somewhat earlier, although from experience of the time it takes to
go from a paper draft in its submission to a journal to publishing then I am not comparing like
with like. However, I certainly used it to generate the results published in a paper (Pugh &
Bromhead, 1985) although they were there redrawn by a draughtsman from a computer plot
both for an initial technical report and for the paper, and one of the figures appears in a book
of mine published in 1985.

189

Figure C1. The sequence of triangles to show different contour bands. Left: the individual triangles, Right:
triangles drawn over each other. The apex with the value higher or lower than the other two is on the right in

each case.

C.2 Using a plotter

Having used various pen plotters when they were available attached to mainframes or personal
computers I found several things that may still be relevant or may not. One of the things was
that much of the time taken to produce a plot was taken up by pen changes and that plots could
be speeded considerably by doing multiple passes through the contouring, finishing one colour
first before another. This is particularly the case where, for example, the zero level contour is
in a different colour, positive and negative contours are coloured differently, or periodically,
contours are given different emphasis for example when contouring topography where the
contour interval might be say 10 m and every 50 or 100 m the contour is drawn in a different
colour or weight. Plotters also slowed down dramatically when dotted or dashed lines needed
to be drawn. The point is that even the slowest computer is dramatically faster than even a very
fast pen plotter. Pen plotters also are very poor at drawing filled areas and because they use
wet ink they have all the defects in causing paper stretch that are found with the use of highly
saturated colours with inkjet printers. These things are not ClearWin+ issues but are things that
you (might) need to worry about within your Fortran code.

C.3 Labelling the contour values

I mention this because it is an issue that arises very quickly with any contour graphic.
 If you can be certain that the contour lines always finish at the boundary of the graphic, then
the annotation can be applied there. I have a particular application where this is so and the
contour lines always finish at the sides and/or bottom of the plot area and I have chosen to label
them along the bottom and on the right-hand side, with the right-hand side selected because
that there is a known position to start the text.
 With coloured bands, labelling on the body of the graphic is not an effective way to do things
and a key or legend is better. Assuming that one is operating with ClearWin+ graphics, then to
ensure that the key does not overwrite any part of the graphic, it is better to assume that one
part of the available drawing surface is dedicated to the key and that the remainder is dedicated
to the plot itself.
 When using line contours, labelling is best done on specific contours. One method is to
determine when the individual segments of a particular contour are long enough to be omitted

190

and replaced with the contour label, and another method is to simply overwrite the contour,
perhaps using a different colour for the label, or blanking out the line by overwriting it with the
background colour before writing the label. This task is trivial for a skilled draughtsman, but is
rather difficult to program, especially as the text values for specific contour levels may vary in
length. A method that I have found simplifies matters is to imagine that there are one or more
virtual (i.e. invisible and not plotted) lines through the graphic, perhaps a vertical line and a
horizontal line, and to only label contours where they pass through the virtual lines. Labels can
be a single character if a key is provided, and labelling with letters enables you to (for example)
associate uppercase with positive values and lower case with negative. Short contour labels are
in any case very desirable on screen as the resolution is likely to be limited.

C.4 A slight warning (or two)

Triangulation contouring can be somewhat misleading in the vicinity of isolated high (or low)
points, as the effect of the high point is distributed over a larger area than may actually be the
case. It is a problem that occurs when plotting topographic surveys where the elevations are
measured as a discrete number of points. It can also be a problem when the triangulation is
automatic and triangles with a very long and narrow aspect ratio are thereby generated.
Misleading contours are also generated if they are smoothed over a discontinuity as for example
in plotting strata contours on a geological map without taking into account a fault or faults,
especially when the existence of such a fault is unknown.
 Pen plotters were notorious for running out of ink at critical points in a generation of a big
and complicated plot and therefore requiring the whole lot to be plotted a second time. In the
past I found it useful to be able to rerun the plot from a particular point where the pen had run
out of ink rather than to run a complete second drawing.

C.5 Finite elements and smoothing

I have experiences in this field that date back a long way. Some software takes the approach
that the problem is divided into simple triangles anyway, with field values determined at nodes.
A variant of the triangular element approach was to divide the problem into quadrilaterals, each
of which was formed by four triangles. In both of these cases, the contours can only be
smooth(er) if a finer mesh of elements is used. Where quantities are determined inside the
elements, then contours that are continuous from element to element can be obtained but with
the loss of some accuracy by averaging at the nodes, including, if necessary, any appropriate
extrapolation from the inside of an element to its nodes.
 My own particular preference in the finite element field is to use the isoparametric elements
that are basically quadrilaterals using 4 (linear), 8 (quadratic) or 12 (cubic) nodes. In much of
my work I have used Serendipity shape functions, (see Zienkiewicz & Taylor), but there may be
some merits in using Lagrangian shape functions at the cost of more nodes, some of which are
internal and not simply distributed around the periphery of each element.
 Describing only serendipity elements, eight and 12-noded variants may need to be plotted
with linear segments around the periphery and again - provided enough elements are specified
- this barely shows. The four- and eight-node elements produce reasonable contours if the
triangles are obtained from a central point and segments of the periphery. However, as the field
value defined at nodes has respectively a quadratic or cubic distribution, it is possible to
determine field values at internal points. I have found it extremely useful in a way that works
with quadratic or cubic variation to divide each element into a number of smaller quadrilaterals
with virtual nodes that are interpolated, and a 6 by 6 grid guarantees that using either element

191

the actual nodes will coincide with at least some of the virtual (sub-element) nodes. The figures
below illustrate this subdivision.

Figure C.2 Top row: Elements of the Serendipity family, which have simple polynomial shape functions, Bottom
row: the equivalent Lagrangian elements, these having internal as well as peripheral nodes. Left to right: first,

second and third order elements.

corner node - all elements

mid-side node - quadratic elements

side node - cubic elements

internal node - Lagrangian quadratic elements

internal node - Lagrangian cubic elements internal grid into rectangles with shape
function interpolation to get field value

at each corner

internal grid squares divided into
at least 4 triangles for contouring

Figure C.3 A 6x6 subdivision of each element including a subsequent 4-triangle subdivision of each sub-element
works with Serendipity or Lagrangian elements of 1st, 2nd and 3rd order, with the appropriate parent element

nodes fitting exactly onto the sub-element nodes. Field values obtained at the nodes can be interpolated to the
sub-element nodes, and whereas the central node for division of a sub-element into triangles could be obtained

by straightforward averaging from the four corners, it too could be obtained via shape function interpolation
from the parent element.

192

Appendix D: Drawing graphics for finite element method (FEM)

applications

It is rather difficult to imagine that anyone is setting out to convert or implement a fully-
functional 3-D FEM system in FTN95/ClearWin+ today, but there are plenty of old codes around
with a limited range of functionality but which are still useful in some contexts. The following
section contains some suggestions for drawing 2-D images based on FEM meshes.
Implementing anything more complex is down to your imagination. The advice is a mixture of
algorithms and suggestions for colour.

D1 Drawing finite element meshes with outlines

Drawing a complete mesh is a matter of treating each element as a closed polygon, and drawing
each using DRAW_POLYGON@. It doesn’t matter that many parts of the outlines will be drawn
twice, as the process is very quick, and indeed, even in the pen plotter days the overhead of
retracing the outlines was a tiny overhead compared to moving the pen to a new start point.
 An interesting thing about two-dimensional finite element meshes is that whereas corner
nodes of triangular or quadrilateral elements can ‘connect’ to variable numbers of elements, a
side that is only present on one element is on the periphery of the mesh, and all other sides
connect to only two elements. If those two elements have different properties, then that side is
on a junction of two materials.
 Therefore, if we want to draw the outline of the mesh, it is a matter of drawing all those sides
that only relate to one element, and to draw the junction between material types it is a matter
of drawing only the sides that have different materials in each of the two connected elements.
The way I do these two actions is rather simple, because I favour elements with nodes on the
sides as well as the corners, for example the 8-node isoparametric quadrilateral element or its
6-noded triangular cousin. I scan through all the elements and keep for each node a list of the
materials associated with each node. I have a limit of 9 elements connecting to each (corner)
node, and therefore I need a structure such as this:

 DIMENSION MATERIAL_NUMBERS(No_of_NODES,10)

where the 10th element is how many connections there are. In my simple codes I don’t
differentiate the numbering of corner and side nodes, and there aren’t any missing numbers.
As each element is dealt with, I add its material number to each connected node. Then, I scan
through the list of elements a second time, looking for sides where the side node has only one
material number – which is a mesh boundary – and draw that, or where there are two material
numbers that are different, and draw those sides as an internal boundary.
 When using elements such as simple triangles, we do not have the convenience of having a
side node, and have to treat each side in terms of the nodes at its ends. That means creating a
list of sides, then scanning through the elements to see if a side is unique (for a mesh boundary)
or if it occurs twice (as most sides will do) with different material types on either side (and thus
is an internal boundary). If the nodes are numbered, as they are in my case, and the numbers
are stored anti-clockwise round each element, then when a common side is encountered a
second time the order of the nodes is reversed. I personally find the linear elements more
difficult to deal with than those elements that have side nodes.

193

D2 Drawing FE meshes with internal shading

An alternative to drawing outlines is to draw the mesh as filled polygons, one for each element,
and to use different colours for each material. That procedure requires little effort. The critical
thing is to choose the colour values.
 If the drawing is to be printed then the selection of colours should avoid saturated hues,
because in the case of inkjet printers, too much ink makes the paper stretch or in the case of
laser printers gives to thicker film that may not fuse properly onto the paper. Moreover,
saturated colours make it difficult to print anything over-the-top such as element numbers,
node numbers or indeed any other graphical element such as vector arrows, unless they are
drawn in white or yellow but even then, they do not come across so well as drawing in black
over pastel shades. I find it useful to have a mid-grey background rather than a white one on
screen in the client area of a window and then to draw the mesh over it in pastel shades, because
I find that to be more effective than simply using a white background. The colour rendition of
modern monitors has improved but nevertheless it may be necessary to make the colours more
saturated when drawing on screen than when printing, and in the print case not to use a grey
background as that is wasteful of ink or toner and rather unnecessary. If the image is to be
projected, then the more restricted colour range of projectors may need even more saturation
in order for them to be more easily discriminated it is useful to have a slider control positioned
in the status bar to increase the saturation of such background colours when the application is
run and displayed via a projector because that gives a very easy way of making sure that things
can be seen and discriminated between.
 Anything overprinted as lines or text on a white or pastel background works well in black,
red or blue, but less well in green or yellow, especially with thin lines. In contrast, overprinting
lines or text on a saturated colour or black works best as white, yellow or perhaps green – again,
the latter choice (saturated colour backgrounds and light-coloured annotations) is not good for
printing on paper.

D3 Progressions

A common type of plot is to show the original mesh and overlay that with a plot of the mesh as
deformed, with the displacements exaggerated. Such plots are common in plane stress, plane
strain and also axisymmetric stress and deformation analyses. On-screen, the dotted and
dashed lines are not particularly attractive, and it is better to use colour or even shades of grey.
I have found it good in the case where there are several stages in deformation to show on a
single plot to draw the original in light grey, then to follow it by over-printing in progressively
darker shades, although after a few stages the picture gets too complicated, and it is not always
possible to discriminate between the shades of grey. It doesn’t seem to work so well with the
colour progression reversed.

194

Appendix E: Graphical interaction – the ‘stretchy box’

Anything approaching an effective demonstration of a complete graphics interaction in a real
program would take far too many pages in the book. And this little program is one that I wrote
to answer a query that someone raised on the Silverfrost user forum. Basically, it draws an
eight-noded rectangular box with four corner nodes and for the mid-sides similar to a second
order isoparametric serendipity finite element. It is possible to ‘pick up’ any one of the nodes
and move it, as a result of which the box changes shape. It stays rectangular however, and an
interesting exercise might be to allow distortions, for example when the corner nodes are
moved the adjacent side nodes move too, and that makes for a quadrilateral rather than a
rectangle.
 Critical elements in this short demonstration program are that the first drawing of the box
appears with a start-up format code and that different cursors are selected as the mouse pointer
moves over particular nodes. The cursors are taken from a set named ‘smooth cursors’ kindly
placed on the Internet by Vlastimil Miler, and their meaning is pretty obvious from their names.
A full mouse input is required for this program, and a sensitivity of selection is defined as eight
pixels. Finally, GRAPHICS_WRITE_MODE@ (3) is selected. There are four of these modes, and No. 3
has the interesting property that if you draw something with it, and then you draw it again, the
second drawing erases the first. It is called XOR mode.
 Mouse pointers or cursors are drawn using XOR mode. You may have noticed that ClearWin+
switches to a plus-sign cursor by default when the mouse pointer is moved over an on-screen
drawing surface. A further property of XOR drawing is that should this cursor, which is rather
simple, be moved over a mid-density grey area it will simply disappear, and that is principally
why more sophisticated cursors are usually preferred including those that have a range of
colours and effects so that they show up against all backgrounds.

 WINAPP

 OPTIONS (INTL, DREAL)

 PROGRAM WILFRIED

C ----------------

 COMMON /BOXCORNERS/ iX1, iX2, iY1, iY2, NCURS

 INCLUDE <WINDOWS.INS>

 INTEGER, EXTERNAL :: KALLBACK

 INTEGER, EXTERNAL :: iBOXPLOT

 iX1 = 100; iX2 = 300; iY1 = 100; iY2 = 300

 NCURS = 1

 IA=WINIO@('%ca[Test for stretchy box]&')

 IA=WINIO@('%sc&', iBOXPLOT)

 IA=WINIO@('%5cu[arrow][updown][leftright][diag1][diag2]&', NCURS)

 IA=WINIO@('%`^gr[BLACK, full_mouse_input]', 400, 400, iHANDLE,

 & KALLBACK)

 STOP; END

 INTEGER FUNCTION KALLBACK()

C ---------------------------

 COMMON /BOXCORNERS/ iX1, iX2, iY1, iY2, NCURS

 KALLBACK = 1

 iSENSITIVE = 8

 iXA = (iX1+iX2)/2

 iYA = (iY1+iY2)/2

 CALL GET_MOUSE_INFO@ (jX, jY, jFLAGS)

195

 NODE = 0

 IF (ABS(iX1-jX) .LE. iSENSITIVE) THEN

 IF(ABS(iY1-jY) .LE. iSENSITIVE) THEN

 NCURS = 4

 NODE = 1

 ELSE IF(ABS(iY2-jY) .LE. iSENSITIVE) THEN

 NCURS = 5

 NODE = 7

 ELSE IF(ABS(iYA-jY) .LE. iSENSITIVE) THEN

 NCURS = 3

 NODE = 8

 ENDIF

 ELSE IF (ABS(iX2-jX) .LE. iSENSITIVE) THEN

 IF(ABS(iY1-jY) .LE. iSENSITIVE) THEN

 NCURS = 5

 NODE = 3

 ELSE IF(ABS(iY2-jY) .LE. iSENSITIVE) THEN

 NCURS = 4

 NODE = 5

 ELSE IF(ABS(iYA-jY) .LE. iSENSITIVE) THEN

 NCURS = 3

 NODE = 4

 ENDIF

 ELSE IF (ABS(iXA-jX) .LE. iSENSITIVE) THEN

 IF(ABS(iY1-jY) .LE. iSENSITIVE) THEN

 NCURS = 2

 NODE = 2

 ELSE IF(ABS(iY2-jY) .LE. iSENSITIVE) THEN

 NCURS = 2

 NODE = 6

 ENDIF

 ELSE

 NCURS = 1

 ENDIF

 IF (NODE .EQ. 0) RETURN

 IF (jFLAGS .EQ. 1) THEN

 IK = iBOXPLOT()

 IF (NODE .GE. 1 .AND. NODE .LE. 3) THEN

 iY1 = jY

 ELSE IF (NODE .GE. 5 .AND. NODE .LE. 7) THEN

 iY2 = jY

 ENDIF

 IF (NODE .GE. 3 .AND. NODE .LE. 5) THEN

 iX2 = jX

 ELSE IF (NODE .EQ. 1 .OR. NODE .GE. 7) THEN

 iX1 = jX

 ENDIF

 IK = iBOXPLOT()

 ENDIF

 RETURN; END

 INTEGER FUNCTION iBOXPLOT()

C ---------------------------

 COMMON /BOXCORNERS/ iX1, iX2, iY1, iY2, NCURS

 INCLUDE <WINDOWS.INS>

196

 iBOXPLOT = 2

 CALL GRAPHICS_WRITE_MODE@ (3)

 iXA = (iX1+iX2)/2

 iYA = (iY1+iY2)/2

 CALL DRAW_RECTANGLE@ (iX1, iY1, iX2, iY2, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iX1, iY1, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iX1, iY2, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iX2, iY1, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iX2, iY2, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iXA, iY1, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iXA, iY2, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iX1, iYA, 4, 4, RGB@(0,0,255))

 CALL DRAW_FILLED_ELLIPSE@(iX2, iYA, 4, 4, RGB@(0,0,255))

 RETURN

 END

 RESOURCES

 1 24 default.manifest

 arrow CURSOR "SmoothArrow.cur"

 updown CURSOR "SmoothVerticalSize.cur"

 leftright CURSOR "SmoothHorizontalSize.cur"

 diag1 CURSOR "SmoothDiagonal1.cur"

 diag2 CURSOR "SmoothDiagonal2.cur"

I have very little doubt that this program might be written in a more compact and certainly
more elegant form, but the point is to demonstrate what it does and not to show off a level of
skill that I don’t possess. Other useful exercises with this basic framework would be to make
the window and the drawing surface resizeable, to give the box a fill colour, to change
background colours, or to make the sides into curves, or even to allow a linked series of
‘stretchy boxes’ to be moved into an arbitrary shape.
 Two features of this code are noteworthy. One is to set the graphics mode to 3 (XOR), the other
is to define cursors from the RESOURCES section thus:

 IA=WINIO@('%5cu[arrow][updown][leftright][diag1][diag2]&', NCURS)

At any point, we can change cursor by simply picking one of the numbers from 1 .. 5 to assign
to NCURS, and (obviously requiring NCURS to be still in scope, as I have done it by use of COMMON)
and the cursor changes. The format code %cu changes the cursor for the next control in the
window, which is what we want to happen in the %gr drawing surface. Another format code,
%dc, sets the cursor for the whole application, and otherwise has the same syntax as %cu. If
either %cu or %dc is qualified with a grave accent, then it can take the standard cursors (of which
there are 11, see section 18.2) and whose names are listed in the documentation. Setting NCURS
to 0 restores the default cursor.
 Some exercises with this program might be to use colour, or to allow the user to switch
between enlarging the rectangle or turning the figure into an arbitrary quadrilateral when a
corner node is dragged. As presented above, a node will be dropped if the mouse pointer is
moved too rapidly. You could change that if you wished by thinking about just what ‘click’ drops
the control point.
 Incidentally, the scanner software I use (VueScan from Hamrick software) uses a stretchy box
of this type to select the area of a scan to save.

197

Appendix F: Useful reading

As Fortran is a fairly old computer language, many of the books that I have in my library are
probably out of print and therefore not obtainable as new copies, although the second-hand
book market often has copies available for purchase. I referred to a number of these books in
the text, but have produced a consolidated list here where all the titles are brought together in
one place.

Angell, I. O. and Griffiths, G. (1987) High resolution computer graphics using Fortran 77.
(Published by MacMillan).
The book is very dated, but is still useful. I tried the algorithm for hatching an arbitrary polygon
but found that if one of the hatching lines went through one of the apex points then the
appropriate line was not drawn. They program graphics as if for a plotter, with what are
effectively pen up, pen down and move commands.

Anon. (Various dates) The HPGL/2 Reference Guide, later in a 3rd Edition (1997) as The HPGL/2
and HP RTL Reference Guide. (Published by Addison Wesley)
Probably not so much Anon., but rather corporate HP. It is now available online.

Etter, D. M. (1992) Structured Fortran 77 for Engineers and Scientists. (Published by Wiley).
The book certainly made its mark, with at least 5 Editions, the later ones mentioning Fortran
90.

Kruger, A. (1991) Efficient Fortran programming. (Published by Wiley).
I found this one to be far more useful than Metcalf’s Effective Fortran 77. As a vocal exponent of
the merits of Fortran 90 et seq., Metcalf is probably now a little embarrassed by that book. He
also jumped the gun rather, with Reid, in publishing a book entitled Fortran 8X Explained, and
no matter how I try, I cannot easily associate in my mind 8X with 90! (Although X is 10 in Roman
numerals).
 Kruger discusses, amongst other things, Huffman encoding or file compression of the ZIP
type.

McCracken, D. D. wrote several books of Fortran programming, and any one of them will prove
instructive, even though a little historical. The one I had (lost to yet another student) was
probably A Guide to Fortran IV Programming, and most probably was the 1973 revised edition
which was a large format paperback (Publisher: Wiley).
 Incidentally, in the film Hidden Figures, I suspect that the book on Fortran stolen from the
library was far more likely to have been an early edition of McCracken’s 1961 book A Guide to
Fortran Programming than the IBM Fortran manual that is featured.

Morris, S. (1991) Newnes PC Printers Pocket Book (published by Butterworth-Heinemann).
This book lists the escape codes for a number of prominent printer types to access facilities
above and beyond the printing of plain text, but does not seriously entertain printing raster-
based graphics.

Ribar, J. L. (1993) Fortran programming for Windows. (published by McGraw-Hill)
Quite an interesting book but not of any immediate relevance, because its subject is the very
minimal extension to the Microsoft Fortran compiler allowing some basic interface with

198

Windows that is nowhere near as capable as ClearWin+. ClearWin+ came out in 1992 and even
at its launch was far more capable than Microsoft’s Fortran extension.

Four books that are beautifully illustrated and designed to make you think have been written
by Edward Tufte:

Tufte, E. Envisioning information
Tufte, E. The visual display of quantitative information.
Tufte, E. Visual explanations: Images and quantitative evidence and narrative.
Tufte, E. Beautiful evidence.

OK, there is some overlap, and they aren’t cheap. They are available from their Author’s
website: https://www.edwardtufte.com/ . You may find, as I do, that Tufte writes in a
supercilious and somewhat condescending manner, but even so, the books are worth a look and
remind you that there is more to graphics and presenting information than a table of results
from a computer program printed out on lineprinter paper as a trap for dust and spiders’ webs!

Ward, T. and Bromhead, E. N. (1989) Fortran and the Art of PC programming. (published by
Wiley)
At least you now know the origins of the title of this book! Probably not worth acquiring.

R. S. Pugh, and E. N. Bromhead (1985) Design of seepage control measures for an embankment
dam using the finite element method. Proceedings of the 15th International Congress on Large
Dams, Lausanne. 1167-1183.

I have no doubt that there are far more modern books on Fortran that really ought to make it
into this list, but somehow they don’t appeal to me, as programmers putting a Windows
interface onto a Fortran 77 program are probably more in need of a refresher on what features
there are in Fortran 77 than exposure to a completely new style of programming!

On the basis that you should program in a style that suits you, then any one of the more modern
books could be your preferred text.

If you are programming a finite element system, then my textbook of choice has always been
one or other of the editions of late Professor Zienkiewicz’s text, published by Wiley. My own
favourite is the second edition, still then in a single volume.

https://www.edwardtufte.com/

199

Appendix G: How and where to look for help documentation

There have been many places in this book where I have drawn attention to the help available,
but the following is a summary. Even where the help files are crystal clear, they tell you how to
invoke the facilities, but not why you should (or should not). Crystal clarity is not only a matter
of what was written: it is also a matter of what the reader understands at any point in time, and
something that was crystal clear to the writer who understands everything may not be so
transparent to a programmer using ClearWin+ for the first time.
 Immediately accessible help for FTN95 and ClearWin+ is available if you are using Plato.
There is also an online version of everything on the Silverfrost website. I prefer to use the
FTN95.CHM compiled hypertext help file which for convenience I have copied onto my desktop
along with the two enhancement files FTN95.ENH and CWPLUS.ENH, both of which can be read
with the Notepad application or any other text editor.
 The places that I look most frequently in the compiled hypertext help file are under the tab
for ClearWin+, particularly the next tab Format code reference when I know the format code but
need reminding of its particularities. The same goes for the Library reference, and both of these
sections listings in alphabetical order. The rest of the tabs are useful if you don’t know what
you’re looking for and are worth a read.
 In years gone by, the documentation for the compiler was supplied into small format manuals.
Digital versions of those old manuals can be downloaded from the Silverfrost website by finding
and clicking on the Documentation link. The FTN95 user guide is a very substantial document
so beware if you are thinking of printing it. There is also a FTN77 user’s guide and a FTN77
library reference (basically the original two-volume documentation) and a downloadable copy
of the ClearWin+ Fortran Edition handbook. While the earlier documentation is sometimes very
useful, you have to ignore all the references to DBOS and the BRIEF editor which was in vogue in
the past. DBOS was the DOS extender facility that had to be used to access memory when the
operating system MS-DOS and even Windows were based on 16-bit technology.
 The WINDOWS.INS file basically calls three other include files. The files themselves are
somewhat dense and relatively impenetrable but they do list all of the Windows functions and
their interfaces so that they can be invoked in your Fortran program. ClearWin+ is of course a
simpler interface, but when it does not provide a function that you know must exist in Windows
your best chance of finding it is by looking in the include files for something that looks from its
name as if it might fit the bill, and then go on to research what that function actually does by
searching for it online in the MSDN website. (MSDN stands for MicroSoft Developer Network).
 The enhancement files are always a useful place to look for ideas.

200

Appendix H: HOMER.FOR written as HOMER.F90

At Paul Laidler’s suggestion, I modified HOMER.FOR in stages to conform to later Fortran styles:
free format, modules (maybe), IMPLICIT NONE and so on. My first try was to compile HOMER.FOR
as if it were free format. It failed because of comments starting with C in column 1. It didn’t mind
the other initial indents, capitals, implicit type and so on. None of the lines is long enough to
merit a Fortran continuation, so that didn’t fox it.
 I then removed the OPTIONS line, because it is superfluous, but as FTN95 is configurable, you
have to watch that the configuration is still at the original default. You can slip in IMPLICIT NONE,
but this is needed in (almost) every routine, as there is no over-arching setting, and even a
callback routine needs an INTEGER return code, although usually that is specified as a constant.
A nice feature is the multiple declaration of INTEGER and EXTERNAL together. If you forget
IMPLICIT NONE, then implicit typing takes over anything not explicitly declared, so is something
to watch. DREAL can be omitted from this little program, because there aren’t any REALs anyway,
but without it, future developments may cause trouble, particularly with REAL constants even if
all the variable names are fully declared.
 At that point, I noticed that I was using lower case for ClearWin+ format codes. It’s something
that I have adopted because it improves readability. So I tried making everything lower case,
and removing the leading blanks. Fortunately, the code is so short that it is still readable,
although to my eye somewhat less so than the original. Some capitalisation remains because
that is needed for Windows. I decided at the same time to remove all superfluous blank lines
and blank characters, just because I could, and some programmers like it that way.
 Then I removed the INCLUDE lines. In most places it is only necessary to declare WINIO@ to be
INTEGER, and the rest of the included information is redundant. However, doing that means that
you have to keep remembering what to declare every time you use another ClearWin+ option.
Using a MODULE via the USE MSWIN.MOD statement is effectively the same as the INCLUDE line.
 I didn’t go so far as to put multiple statements on one line, but I did remove the continuations
of WINIO@, just to show firstly that it could be done, and secondly what it might imply. For the
line in the main program routine, it still works, but imagine what it would be like with say 10
main menu commands and an average of 6 submenu items in each, That’s 60 callback functions.
If say half of those are potentially greyed out, then the 30 grey code settings would be
interleaved with the callback functions. Now perhaps add bubble help, icons and the statement
would simply become difficult to edit. Hence my recommendation to keep as few items in a
WINIO@ call as possible, both to ensure readability and also to facilitate adding or removing
items during program development and updating.
 There was no reason to keep the KB_ prefix to the callback function names as they are all
defined as INTEGER. So here is the end result:

winapp

program homer_free

implicit none

integer w,winio@

integer,external::file,edit,help_about

w=winio@('%ca[Homer]%mn[File,Edit,Help[About Homer ...]]%gr[blue]',file,edit,help_about,400,300)

end

integer function file()

file=2

end

201

integer function edit()

edit=2

end

integer function help_about()

implicit none

integer w,winio@

w=winio@('%ca[About Homer]%si*This is a demonstration Windows program%2nl%rj%bt[Dismiss]')

help_about=2

end

So what did I learn? The first thing is just how important to my style of programming the blanks
and blank lines are (thanks Kreitzberg and Schneiderman). With this demo, the loss of the
leading 6 blanks is no great deal, because there aren’t any statement numbers, but if there are,
the initial indent is useful in highlighting those numbers so that they can be found more easily.
Statement numbers are fine if they have a regular ‘stride’, are used sparingly, and even with the
odd GO TO, they don’t do much harm. If you prefer the forms that avoid numbered CONTINUEs,
you really do need to use indentation, and probably blank lines too.
 Following that, it confirmed in my mind that the advice to keep the WINIO@ call contents short
is good, both for readability and for development. Then, I learnt that wasteful though INCLUDE
<WINDOWS.INS> or even USE MSWIN might be, either of them is handy during development as all
the definitions are always available.

 As an aside or two, for me, the loss of capitalisation does seriously affect readability, but it
may not for some people, for example the letters of New York authoress Helene Hanff in her
book “84 Charing Cross Road”. (The book was once serialised and dramatized on BBC TV, and
subsequently made into a film in 1987). I’d feel the same about the loss of punctuation in my
writing. Yes, I know that many people regard all capitals as equivalent to shouting, but the mix
of cases is useful. It wasn’t always thus, indeed, the noted geotechnical celebrity Karl Terzaghi
in 1939 had his consulting report typed in 2 sizes of capitals, the larger ones taking the place of
real capitalisation, while still being monospaced. I didn’t find the presentation nearly so
annoying in his 1939 report on a visit to the Folkestone Warren landslide as his apparent lack
of technical understanding notwithstanding his celebrity! (It’s a big landslide complex, not
Chalk dissolution, Karl, and the sea removed the ‘missing’ material).
 The point is that style is a matter of personal preference; readability and the potential to
modify are more important than style, and correctness beats the other things hands down.

202

Appendix I: The full code for the Listview example

 WINAPP

 OPTIONS (INTL, DREAL)

 PROGRAM LV_EXAMPLE

C ------------------

 INCLUDE <WINDOWS.INS>

 CHARACTER*(80) ROWS(11)

 COMMON /INPUT_GRID/ ROWS, X(10), Y(10), Z(10), ISEL(10)

 INTEGER, EXTERNAL:: KB_FOR_LV_GRID

 NROWS = 11

 iSEL = 0 ! initialise the array

 iSEL(1) = 1

 iVIEW = 1

 ROWS = '| | | | '

 DO 10 I=2,11

 ROWS(I) = '|'//CHAR(I+63)//'| | | '

 10 CONTINUE

 ROWS(1) = '|Station_+65|Easting (m)_+105|Northing (m)_+105|'

 & //'Altitude (m)_+75'

 IW = WINIO@ ('%ca[ListView example]&')

 IW = WINIO@ ('%^lv[edit_cells,go_down_on_return,'//

 & 'single_selection]&',

 & 420, 200, ROWS, NROWS,

 & iSEL, iVIEW, KB_FOR_LV_GRID)

 IW = WINIO@ ('%lw%ff%nl%16bt[OK]', LW)

 END

 INTEGER FUNCTION KB_FOR_LV_GRID()

C ---------------------------------

 CHARACTER*(80) ROWS(11), BAND

 COMMON /INPUT_GRID/ ROWS, X(10), Y(10), Z(10), ISEL(10)

 CHARACTER*(80) CBR, CBE

 CHARACTER*(2) CBK

 CHARACTER*(1) KHAR

 CHARACTER*(20) TEXT

 DIMENSION INDEX(11)

 INCLUDE <WINDOWS.INS>

 KB_FOR_LV_GRID = 2

 IROW = CLEARWIN_INFO@('ROW_NUMBER')

 ICOL = CLEARWIN_INFO@('COLUMN_NUMBER')

 CBE = CLEARWIN_STRING@ ('EDITED_TEXT')

 CBR = CLEARWIN_STRING@ ('CALLBACK_REASON')

 IF (iCOL .EQ. 1) RETURN

 IF (CBR .EQ. 'BEGIN_EDIT') THEN

 RETURN

 ELSE IF (CBR .EQ. 'EDIT_KEY_DOWN') THEN

 NK = CLEARWIN_INFO@('KEYBOARD_KEY')

 KB_FOR_LV_GRID = 2

 L = LEN_TRIM (CBE)

203

 K = 0

 DO 10 M=1,L

 IF (CBE(M:M) .EQ. '.') K=1 ! decimal point exists

 10 CONTINUE

 IF (NK .GE. 48 .AND. NK .LE. 57) RETURN

 IF (NK .EQ. 46 .AND. K .EQ. 0) RETURN

 KB_FOR_LV_GRID = 4

 RETURN

 ELSE IF (CBR .EQ. 'END_EDIT') THEN

 L = LEN_TRIM (ROWS(IROW+1))

 INDEX = L

 BAND = ROWS (IROW + 1)

 KHAR = BAND(1:1)

 INDEX(1) = 1

 K = 2

 DO 20 M=2,L

 IF (BAND(M:M) .EQ. KHAR) THEN

 INDEX(K) = M

 K = K + 1

 ENDIF

 20 CONTINUE

 IF (CBE .EQ. '') THEN

 TEXT = ' '

 GO TO 30

 ENDIF

 READ (CBE,*) VALUE

 WRITE (TEXT,'(F12.3)') VALUE

 ELSE IF (CBR .EQ. 'KEY_DOWN') THEN

 CALL BEEP@

 RETURN

 ENDIF

 30 CONTINUE

 ROWS(IROW + 1) = BAND(1:INDEX(ICOL))//TEXT//BAND(INDEX(ICOL+1):L)

 CALL WINDOW_UPDATE@ (ROWS)

 KB_FOR_LV_GRID = 2

 RETURN

 END

 RESOURCES

 1 24 default.manifest

Hard to follow? Sure. There are other examples on the Silverfrost Forum – search using the

term ‘listview’. Good Luck!

204

Appendix J: Efficient use of Fortran (and computing resources)

FTN95 has debugging and optimisation options, but I have never really found the need for
either of them, as I tend to write code in small increments, including developing dialogs
independently of the application and only incorporating them when they are fully developed.
Anyway, even the slowest computer capable of running recent versions of Windows will
execute the GUI part of your program many times faster than the user can possibly interact with
it. Both options, particularly the optimisation option, may well prove useful when implementing
the computational core of a program.
 Starting with Kreitzberg and Schneiderman’s advice on optimisation, especially to remove
subroutine calls from within nested loops, I had originally found that advice to be very effective
in reducing run times of my programs. However, it came at a cost, and that cost was in
readability. While there is no doubt that each subroutine call carries an overhead, my
experience with FTN95 is that the overhead is nowhere near as great as it was with low memory
capacity mainframes a half-century ago, and my recommendation is that you go for readability
rather than taking the K&S advice.
 Another bit of modern advice is not to remove common subexpressions from a sequence of
assignment statements, but rather to let the compiler do it for you, as FTN95 certainly can. K&S
said that it was beneficial to do it, because for the compilers of the time it was – they said – more
efficient. The modern advice is counter to that. However, those common subexpressions do take
up space in the source code and do affect overall readability, so on balance, I have found it better
to identify them, and then store their results in a local variable. It helps if such local variables
are readily identifiable. One program I read25 used the word ‘GASH’ (which in informal UK
English also has the meaning of spare – but also rubbish or waste) to denote such a local
variable, and when more than one local variable was used the programmer cycled through the
remaining vowels. I have opted for COEF1 to COEF9 as appropriate names in one of my programs.
Again, readability trumps optimisation, certainly in the user interface but also quite possibly
elsewhere, and readability improves with short statements and appropriate naming. Re-using
local variable names in the same subprogram is a recipe for confusion, and on modern PCs a
handful of local variables doesn’t cause problems.
 Subroutine names are fairly obvious when you come across them in source code, either
because they crop up in a CALL statement, or at the start of a SUBROUTINE. What may not be
obvious, however, is where to find the source code of the subroutine if the complete program
is spread out across numerous files. There is obviously a place for comments, especially inline
comments, to help in this. FUNCTIONs are more difficult to recognise at a glance, and that is why
I like to use mechanisms such as the KB_ prefix for callback functions. As far as possible, I like
to have such callback functions in the relevant source code files, close to where they are called,
but that isn’t always possible, and again, it is a good use of comments to provide information on
where to look. If you don’t like the idea of such prefixes, then what about a postfix such as _FN?
 Back in the early days of mainframes and the first generation of PCs, memory was very
restricted. This often meant that the early Fortran need to declare the length of every array was
not a very great problem: you declared arrays as big as you could get away with, and that was
that. It may still be a satisfactory solution. Indeed, in one of my student surveying programs,
there is space for 5,000 readings. A diligent student group might take 50, and a group with one
or more mature members with some industrial experience might even get that up to 100. If I
used the program for my own work, I doubt it I would take 200 readings. And yet, the space

25 It was a finite element code from Swansea University in a thesis.

205

taken for 5,000 readings of degrees, minutes, seconds, and distances takes only 100k bytes
when the first 3 items are INTEGER*4!
 Other workarounds in the past included overlaying program executable code (which FTN95
doesn’t do), or using an array X declared usually in blank common as X(1) or X(*), which was
then expandable into whatever free memory there is by simply ignoring the length declared
and pretending that it was longer. FTN95 still supports that nasty (but formerly useful)
approach, although for those with the appropriate needs, it is worth pointing out that there are
now facilities for dynamically allocating arrays and deallocating them to free up space when it
is no longer used.
 My advice to programmers putting a Windows wrapper round an existing program is to stick
with whatever original memory management there was until you have the ClearWin+ code
sorted out and treat updating the computational core as something to follow on with.

Acknowledgements

I would like to thank Bob Falconer for reading a first draft of this book, and also Robert and Paul
at Silverfrost who laboriously copy-edited the work, finding typos that even four revisions of
my own had not wrinkled out.
 Thanks also go to those contributors to the Silverfrost users’ forum who have helped me over
the years, with a particular Thank You to the memory of the late John Horspool of Gloucester.
 Although a lot of the book was written at the keyboard, some parts of it were dictated, using
Dragon Naturally Speaking Professional version 15, and I lay some (but not all) of the blame for
those errors on Microsoft Word’s autocorrect feature and to Dragon’s speech recognition of my
voice!

For those who prefer the modern style of Fortran coding, then please accept my apologies for
my more traditional approach.

Eddie Bromhead
15th December 2022

